Renormalisation of q-Regularised Multiple Zeta Values

被引:7
作者
Ebrahimi-Fard, Kurusch [1 ]
Manchon, Dominique [2 ]
Singer, Johannes [3 ]
机构
[1] ICMAT, CINicolas Cabrera 13-15, Madrid 28049, Spain
[2] Univ Blaise Pascal, CNRS, UMR 6620, 3 Pl Vasarely,CS 60026, F-63178 Aubiere, France
[3] Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
multiple zeta values; renormalisation; Hopf algebra; q-analogues; quasi-shuffle relation; QUANTUM-FIELD THEORY; HOPF-ALGEBRAS;
D O I
10.1007/s11005-016-0818-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a particular one-parameter family of q-analogues of multiple zeta values. The intrinsic q-regularisation permits an extension of these q-multiple zeta values to negative integers. Renormalised multiple zeta values satisfying the quasi-shuffle product are obtained using an Hopf-algebraic Birkhoff factorisation together with minimal subtraction.
引用
收藏
页码:365 / 380
页数:16
相关论文
共 28 条
[1]   Analytic continuation of multiple zeta-functions and their values at non-positive integers [J].
Akiyama, S ;
Egami, S ;
Tanigawa, Y .
ACTA ARITHMETICA, 2001, 98 (02) :107-116
[2]   Mixed Tate motives over Z [J].
Brown, Francis .
ANNALS OF MATHEMATICS, 2012, 175 (02) :949-976
[3]   UNFOLDING THE DOUBLE SHUFFLE STRUCTURE OF q-MULTIPLE ZETA VALUES [J].
Castillo-Medina, Jaime ;
Ebrahimi-Fard, Kurusch ;
Manchon, Dominique .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (03) :368-388
[4]   Renormalization in quantum field theory and the Riemann-Hilbert problem II:: The β-function, diffeomorphisms and the renormalization group [J].
Connes, A ;
Kreimer, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 216 (01) :215-241
[5]   Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem [J].
Connes, A ;
Kreimer, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (01) :249-273
[6]   Loday-type algebras and the Rota-Baxter relation [J].
Ebrahimi-Fard, K .
LETTERS IN MATHEMATICAL PHYSICS, 2002, 61 (02) :139-147
[7]  
Ebrahimi-Fard K., 2015, ARXIV151106720
[8]  
Ebrahimi-Fard K., 2015, ARXIV150302977
[9]   A lie theoretic approach to renormalization [J].
Ebrahimi-Fard, Kurusch ;
Gracia-Bondia, Jose M. ;
Patras, Frederic .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 276 (02) :519-549
[10]  
Ebrahimi-Fard K, 2007, FIELDS I COMMUN, V50, P47