Computational vascular fluid-structure interaction: methodology and application to cerebral aneurysms

被引:195
作者
Bazilevs, Y. [1 ]
Hsu, M. -C. [1 ]
Zhang, Y. [2 ]
Wang, W. [2 ]
Kvamsdal, T. [3 ]
Hentschel, S. [4 ]
Isaksen, J. G. [5 ,6 ,7 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[2] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[3] SINTEF Informat & Commun Technol, Dept Appl Math, N-7465 Trondheim, Norway
[4] Simula, Dept Comp Sci, N-1364 Fornebu, Norway
[5] Univ Hosp N Norway, Dept Neurosurg, N-9038 Tromso, Norway
[6] Univ Hosp N Norway, Dept Neurol, N-9038 Tromso, Norway
[7] Univ Tromso, Inst Clin Med, N-9037 Tromso, Norway
关键词
Cerebral aneurysms; Fluid-structure interaction; Arterial wall tissue modeling; Incompressible Navier-Stokes equations; Boundary layer meshing; Wall shear stress; Wall tension; Tissue prestress; FINITE-ELEMENTS; BLOOD-FLOW; BOUNDARY-CONDITIONS; WALL; HEMODYNAMICS; DYNAMICS;
D O I
10.1007/s10237-010-0189-7
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A computational vascular fluid-structure interaction framework for the simulation of patient-specific cerebral aneurysm configurations is presented. A new approach for the computation of the blood vessel tissue prestress is also described. Simulations of four patient-specific models are carried out, and quantities of hemodynamic interest such as wall shear stress and wall tension are studied to examine the relevance of fluid-structure interaction modeling when compared to the rigid arterial wall assumption. We demonstrate that flexible wall modeling plays an important role in accurate prediction of patient-specific hemodynamics. Discussion of the clinical relevance of our methods and results is provided.
引用
收藏
页码:481 / 498
页数:18
相关论文
共 49 条
[11]   Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: Technique and sensitivity [J].
Cebral, JR ;
Castro, MA ;
Appanaboyina, S ;
Putman, CM ;
Millan, D ;
Frangi, AF .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (04) :457-467
[12]   A TIME INTEGRATION ALGORITHM FOR STRUCTURAL DYNAMICS WITH IMPROVED NUMERICAL DISSIPATION - THE GENERALIZED-ALPHA METHOD [J].
CHUNG, J ;
HULBERT, GM .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1993, 60 (02) :371-375
[13]   Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium: a force to be reckoned with [J].
Cummins, Philip M. ;
Sweeney, Nicholas von Offenberg ;
Killeen, Maria T. ;
Birney, Yvonne A. ;
Redmond, Eileen M. ;
Cahill, Paul A. .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2007, 292 (01) :H28-H42
[14]  
FERNANDEZ MA, 2008, RR6623 INRIA
[15]   A coupled momentum method for modeling blood flow in three-dimensional deformable arteries [J].
Figueroa, C. Alberto ;
Vignon-Clementel, Irene E. ;
Jansen, Kenneth E. ;
Hughes, Thomas J. R. ;
Taylor, Charles A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (41-43) :5685-5706
[16]   A computational framework for fluid-solid-growth modeling in cardiovascular simulations [J].
Figueroa, C. Alberto ;
Baek, Seungik ;
Taylor, Charles A. ;
Humphrey, Jay D. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (45-46) :3583-3602
[17]   On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels [J].
Formaggia, L ;
Gerbeau, JF ;
Nobile, F ;
Quarteroni, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 191 (6-7) :561-582
[18]   Fluid-structure interaction in blood flows on geometries based on medical imaging [J].
Gerbeau, JF ;
Vidrascu, M ;
Frey, P .
COMPUTERS & STRUCTURES, 2005, 83 (2-3) :155-165
[19]  
Holzapfel G., 2000, Nonlinear Solid Mechanics: A Continuum Approach forEnineering
[20]   Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement [J].
Hughes, TJR ;
Cottrell, JA ;
Bazilevs, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (39-41) :4135-4195