Computational vascular fluid-structure interaction: methodology and application to cerebral aneurysms

被引:195
作者
Bazilevs, Y. [1 ]
Hsu, M. -C. [1 ]
Zhang, Y. [2 ]
Wang, W. [2 ]
Kvamsdal, T. [3 ]
Hentschel, S. [4 ]
Isaksen, J. G. [5 ,6 ,7 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[2] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[3] SINTEF Informat & Commun Technol, Dept Appl Math, N-7465 Trondheim, Norway
[4] Simula, Dept Comp Sci, N-1364 Fornebu, Norway
[5] Univ Hosp N Norway, Dept Neurosurg, N-9038 Tromso, Norway
[6] Univ Hosp N Norway, Dept Neurol, N-9038 Tromso, Norway
[7] Univ Tromso, Inst Clin Med, N-9037 Tromso, Norway
关键词
Cerebral aneurysms; Fluid-structure interaction; Arterial wall tissue modeling; Incompressible Navier-Stokes equations; Boundary layer meshing; Wall shear stress; Wall tension; Tissue prestress; FINITE-ELEMENTS; BLOOD-FLOW; BOUNDARY-CONDITIONS; WALL; HEMODYNAMICS; DYNAMICS;
D O I
10.1007/s10237-010-0189-7
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A computational vascular fluid-structure interaction framework for the simulation of patient-specific cerebral aneurysm configurations is presented. A new approach for the computation of the blood vessel tissue prestress is also described. Simulations of four patient-specific models are carried out, and quantities of hemodynamic interest such as wall shear stress and wall tension are studied to examine the relevance of fluid-structure interaction modeling when compared to the rigid arterial wall assumption. We demonstrate that flexible wall modeling plays an important role in accurate prediction of patient-specific hemodynamics. Discussion of the clinical relevance of our methods and results is provided.
引用
收藏
页码:481 / 498
页数:18
相关论文
共 49 条
[1]  
[Anonymous], 2002, CARDIOVASCULAR SOLID, DOI DOI 10.1007/978-0-387-21576-1
[2]  
[Anonymous], ENCY COMPUTATIONAL M
[3]   Simulation of intracranial aneurysm stenting: Techniques and challenges [J].
Appanaboyina, Sunil ;
Mut, Fernando ;
Loehner, Rainald ;
Putman, Christopher ;
Cebral, Juan .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (45-46) :3567-3582
[4]   Isogeometric fluid-structure interaction: theory, algorithms, and computations [J].
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Zhang, Y. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :3-37
[5]   Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Reali, A. ;
Scovazzi, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) :173-201
[6]   Isogeometric fluid-structure interaction analysis with applications to arterial blood flow [J].
Bazilevs, Y. ;
Calo, V. M. ;
Zhang, Y. ;
Hughes, T. J. R. .
COMPUTATIONAL MECHANICS, 2006, 38 (4-5) :310-322
[7]   Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device [J].
Bazilevs, Y. ;
Gohean, J. R. ;
Hughes, T. J. R. ;
Moser, R. D. ;
Zhang, Y. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (45-46) :3534-3550
[8]   Computational fluid-structure interaction: methods and application to a total cavopulmonary connection [J].
Bazilevs, Yuri ;
Hsu, M. -C. ;
Benson, D. J. ;
Sankaran, S. ;
Marsden, A. L. .
COMPUTATIONAL MECHANICS, 2009, 45 (01) :77-89
[9]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259
[10]  
Castro MA, 2006, AM J NEURORADIOL, V27, P1703