Delayed cerebrovascular protective effect of lipopolysaccharide in parallel to brain ischemic tolerance

被引:55
作者
Bastide, M
Gelé, P
Pétrault, O
Pu, Q
Caliez, A
Robin, E
Deplanque, D
Duriez, P
Bordet, R
机构
[1] Fac Med Pole Rech, Pharmacol Lab, Equipe Accueil, EA 1046, F-59045 Lille, France
[2] CHU Lille, F-59037 Lille, France
[3] INSERM, U545, Inst Pasteur, F-59045 Lille, France
[4] Univ Lille 2, Lille, France
关键词
ischemia-reperfusion; potassium channel; endothelium; vascular smooth muscle; lipopolysaccharide; brain ischemic tolerance;
D O I
10.1097/01.WCB.0000050064.57184.F2
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cerebrovascular abnormalities, in endothelium and smooth muscle compartments, occur in the course of cerebral ischemia-reperfusion as evidenced by the impairment of endothelium-dependent relaxation and decrease in potassium inward rectifier density in occluded middle cerebral arteries (MCAs). The authors investigated whether a delayed vascular protection occurred in a model of brain ischemic tolerance. A low dose of lipopolysaccharide (0.3 mg/kg) administered 72 h before MCA occlusion induced a significant decrease in infarct volume. In parallel to this delayed neuroprotective effect, lipopolysaccharide prevented the ischemia-reperfusion-induced impairment of endothelium relaxation. In addition, lipopolysaccharide prevented the postischemic alteration of potassium inward rectifier-dependent smooth muscle relaxation as well as the decrease in potassium inward rectifier density measured by patch-clamp in dissociated vascular smooth muscle cells originated from the occluded MCA. These results suggest that during brain ischemic tolerance, lipopolysaccharide is able to induce both a delayed neuroprotective and vasculoprotective effect.
引用
收藏
页码:399 / 405
页数:7
相关论文
共 35 条
[1]  
Akopov S, 1996, CEREBROVAS BRAIN MET, V8, P11
[2]   Dynamics of polymorphonuclear leukocyte accumulation in acute cerebral infarction and their correlation with brain tissue damage [J].
Akopov, SE ;
Simonian, NA ;
Grigorian, GS .
STROKE, 1996, 27 (10) :1739-1743
[3]   Relationship between inward rectifier potassium current impairment and brain injury after cerebral ischemia/reperfusion [J].
Bastide, M ;
Bordet, R ;
Pu, Q ;
Robin, E ;
Puisieux, F ;
Dupuis, B .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1999, 19 (12) :1309-1315
[4]  
BASTIDE M, 2001, CEREBROVASC DIS, V11, P85
[5]   Xanthine oxidase-derived superoxide causes reoxygenation injury of ischemic cerebral endothelial cells [J].
Beetsch, JW ;
Park, TS ;
Dugan, LL ;
Shah, AR ;
Gidday, JM .
BRAIN RESEARCH, 1998, 786 (1-2) :89-95
[6]   Increase in endogenous brain superoxide dismutase as a potential mechanism of lipopolysaccharide-induced brain ischemic tolerance [J].
Bordet, R ;
Deplanque, D ;
Maboudou, P ;
Puisieux, F ;
Pu, Q ;
Robin, E ;
Martin, A ;
Bastide, M ;
Leys, D ;
Lhermitte, M ;
Dupuis, B .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2000, 20 (08) :1190-1196
[7]   Endothelial dysfunction in cardiovascular diseases - The role of oxidant stress [J].
Cai, H ;
Harrison, DG .
CIRCULATION RESEARCH, 2000, 87 (10) :840-844
[8]   Ischemic tolerance in the brain [J].
Chen, J ;
Simon, R .
NEUROLOGY, 1997, 48 (02) :306-311
[9]   Neuronal NO mediates cerebral vasodilator responses to K+ in hypertensive rats [J].
Chrissobolis, S ;
Ziogas, J ;
Anderson, CR ;
Chu, Y ;
Faraci, FM ;
Sobey, CG .
HYPERTENSION, 2002, 39 (04) :880-885
[10]   Reperfusion decreases myogenic reactivity and alters middle cerebral artery function after focal cerebral ischemia in rats [J].
Cipolla, MJ ;
McCall, AL ;
Lessov, N ;
Porter, JM .
STROKE, 1997, 28 (01) :176-180