Understanding Gas Transport Behavior through Few-Layer Graphene Oxide Membranes Controlled by Tortuosity and Interlayer Spacing

被引:23
作者
Roh, Ji Soo [1 ]
Choi, Tae Hwan [1 ]
Lee, Tae Hoon [1 ]
Yoon, Hee Wook [1 ]
Kim, Juyoung [2 ]
Kim, Hyo Won [1 ,2 ]
Park, Ho Bum [1 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[2] Kangwon Natl Univ, Dept Adv Mat Engn, Samcheock 25931, South Korea
基金
新加坡国家研究基金会;
关键词
INTRINSIC MICROPOROSITY; FREE-VOLUME; WATER; SEPARATION; SORPTION; PERMEATION; IONS;
D O I
10.1021/acs.jpclett.9b03082
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Here, we elucidate the gas transport behavior through few-layer graphene oxide membranes (FGOMs) that have a systematically controlled diffusion pathway, including tortuosity and channel width. The obtained unusual gas permeation order (especially, CH4 > O-2 > N-2) of the FGOM provides strong evidence that gas molecules can indeed penetrate through the empty voids created by horizontally assembled GO, which allows selective gas transport features. These unique transport features of the FGOM originate from its continuously connected channel structure, which is an analogue of an ultrapermeable glassy polymer with extremely large free volumes in dense films. Furthermore, variation of the channel width in the range of 0.50-0.55 nm leads to notable changes in the gas permeance orders related to CH4, indicating that there is a transition region for switching the gas transport mechanism between a molecular sieving character and the solution-diffusion model
引用
收藏
页码:7725 / 7731
页数:13
相关论文
共 49 条
  • [1] Abraham J, 2017, NAT NANOTECHNOL, V12, P546, DOI [10.1038/NNANO.2017.21, 10.1038/nnano.2017.21]
  • [2] Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/nnano.2010.8, 10.1038/NNANO.2010.8]
  • [3] Baker R.W., 2012, Membrane Technology and Applications, DOI [10.1007/978-3-319-95603-9_6, DOI 10.1007/978-3-319-95603-9_6]
  • [4] Precision cutting and patterning of graphene with helium ions
    Bell, D. C.
    Lemme, M. C.
    Stern, L. A.
    RWilliams, J.
    Marcus, C. M.
    [J]. NANOTECHNOLOGY, 2009, 20 (45)
  • [5] Free volume and intrinsic microporosity in polymers
    Budd, PM
    McKeown, NB
    Fritsch, D
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (20) : 1977 - 1986
  • [6] Impermeable atomic membranes from graphene sheets
    Bunch, J. Scott
    Verbridge, Scott S.
    Alden, Jonathan S.
    van der Zande, Arend M.
    Parpia, Jeevak M.
    Craighead, Harold G.
    McEuen, Paul L.
    [J]. NANO LETTERS, 2008, 8 (08) : 2458 - 2462
  • [7] Ultimate Permeation Across Atomically Thin Porous Graphene
    Celebi, Kemal
    Buchheim, Jakob
    Wyss, Roman M.
    Droudian, Amirhossein
    Gasser, Patrick
    Shorubalko, Ivan
    Kye, Jeong-Il
    Lee, Changho
    Park, Hyung Gyu
    [J]. SCIENCE, 2014, 344 (6181) : 289 - 292
  • [8] Self-Assembled Free-Standing Graphite Oxide Membrane
    Chen, Chengmeng
    Yang, Quan-Hong
    Yang, Yonggang
    Lv, Wei
    Wen, Yuefang
    Hou, Peng-Xiang
    Wang, Maozhang
    Cheng, Hui-Ming
    [J]. ADVANCED MATERIALS, 2009, 21 (29) : 3007 - 3011
  • [9] Water and ion sorption, diffusion, and transport in graphene oxide membranes revisited
    Cho, Young Hoon
    Kim, Hyo Won
    Lee, Hee Dae
    Shin, Jae Eun
    Yoo, Byung Min
    Park, Ho Bum
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2017, 544 : 425 - 435
  • [10] Water Desalination across Nanoporous Graphene
    Cohen-Tanugi, David
    Grossman, Jeffrey C.
    [J]. NANO LETTERS, 2012, 12 (07) : 3602 - 3608