The weighted Hardy inequality and self-adjointness of symmetric diffusion operators

被引:0
作者
Robinson, Derek W. [1 ]
机构
[1] Australian Natl Univ, Math Sci Inst CMA, Canberra, ACT 0200, Australia
关键词
Self-adjointness; Diffusion operators; Hardy inequalities; UNIQUENESS; DOMAINS;
D O I
10.1016/j.jfa.2021.109067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a domain in R-d with boundary Gamma, d(Gamma) the Euclidean distance to the boundary and H = -div(C del) an elliptic operator with C = (c(kl)) > 0 where c(kl) = c(lk) are real, bounded, Lipschitz functions. We assume that C similar to c d(Gamma)(delta)I as d(Gamma) -> 0 in the sense of asymptotic analysis where c is a strictly positive, bounded, Lipschitz function and delta >= 0. We also assume that there is an r > 0 and a b(delta,r) > 0 such that the weighted Hardy inequality integral(Gamma r) d(Gamma)(delta) vertical bar del psi vertical bar(2) >= b(delta,r)(2) integral(Gamma r) d(Gamma)(delta-2) vertical bar psi vertical bar(2) is valid for all psi is an element of C-c(infinity)(Gamma(r)) where Gamma(r) = {x is an element of Omega : d(Gamma)(x) < r}. We then prove that the condition (2 - delta)/2 < b(delta) is sufficient for the essential self-adjointness of H on C-c(infinity)(Omega) with b(delta) the supremum over r of all possible b(delta,r) in the Hardy inequality. This result extends all known results for domains with smooth boundaries and also gives information on self-adjointness for a large family of domains with rough, e.g. fractal, boundaries. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:34
相关论文
共 35 条
  • [1] Agmon S, 1982, MATH NOTES+, V29
  • [2] [Anonymous], 1966, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band
  • [3] [Anonymous], 1991, DEGRUYTER STUDIES MA
  • [4] [Авхадиев Фарит Габидинович Avkhadiev Farit Gabidinovich], 2015, [Известия высших учебных заведений. Математика, Russian Mathematics (Iz. VUZ), Izvestiya vysshikh uchebnykh zavedenii. Matematika], P61
  • [5] Balinsky A. A., 2015, ANAL GEOMETRY HARDYS
  • [6] Brusentsev A.G., 2004, T MOSC MATH SOC, P31
  • [7] Buckley S, 1996, XVITH ROLF NEVANLINNA COLLOQUIUM, P91
  • [8] David G., 1997, OXFORD LECT SERIES M, V7
  • [9] L1 PROPERTIES OF 2ND-ORDER ELLIPTIC-OPERATORS
    DAVIES, EB
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (SEP) : 417 - 436
  • [10] de Bruijn N., 1981, ASYMPTOTIC METHODS A