An Automatic Ship Detection Method for PolSAR Data Based on K-Wishart Distribution

被引:23
作者
Fan, Weiwei [1 ]
Zhou, Feng [1 ]
Tao, Mingliang [2 ]
Bai, Xueru [1 ]
Shi, Xiaoran [1 ]
Xu, Hanyang [1 ]
机构
[1] Xidian Univ, Natl Lab Radar Signal Proc, Xian 710071, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Elect Informat, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
K-Wishart distribution; non-Gaussian classifier; polarimetric synthetic aperture radar (PolSAR); ship detection; MODEL; CLASSIFICATION;
D O I
10.1109/JSTARS.2017.2703862
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For polarimetric synthetic aperture radar (PolSAR) data, abundant structure and textural information significantly enhance the ability of ship detection. This paper presents an automatic ship detection algorithm for PolSAR data, termed K-Wishart detector, which utilizes non-Gaussian K-Wishart classifier and incorporates the polarimetric SPAN parameter to identify the ships. The fundamental assumption is that the PolSAR data could be well characterized by the non-Gaussian K-Wishart distribution. The automatic ship detection scheme mainly consists of two steps. First, the PolSAR data are divided into different unlabeled clusters by the automatic non-GaussianK-Wishart classifier. Then, the SPAN information is used to extract ships among multiple unlabeled clusters considering the energy difference with ambient environment. Finally, the proposed method is validated using real measured NASA/JPL AIRSAR and UAVSAR datasets by comparing the performance with modified CFAR detector, SPAN Wishart (SPWH) detector, and Wishart detector. The comparison results show that the proposed algorithm could improve the ability of target detection while reduces the rate of false alarm and miss detections.
引用
收藏
页码:2725 / 2737
页数:13
相关论文
共 31 条
  • [1] A Textural-Contextual Model for Unsupervised Segmentation of Multipolarization Synthetic Aperture Radar Images
    Akbari, Vahid
    Doulgeris, Anthony P.
    Moser, Gabriele
    Eltoft, Torbjorn
    Anfinsen, Stian N.
    Serpico, Sebastiano B.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (04): : 2442 - 2453
  • [2] An Improved Iterative Censoring Scheme for CFAR Ship Detection With SAR Imagery
    An, Wentao
    Xie, Chunhua
    Yuan, Xinzhe
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (08): : 4585 - 4595
  • [3] Application of the Matrix-Variate Mellin Transform to Analysis of Polarimetric Radar Images
    Anfinsen, Stian Normann
    Eltoft, Torbjorn
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06): : 2281 - 2295
  • [4] Ship Detection Using Polarization Cross-Entropy
    Chen, Jiong
    Chen, Yilun
    Yang, Jian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (04) : 723 - 727
  • [5] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [6] Classification With a Non-Gaussian Model for PolSAR Data
    Doulgeris, Anthony P.
    Anfinsen, Stian Normann
    Eltoft, Torbjorn
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (10): : 2999 - 3009
  • [7] Automated Non-Gaussian Clustering of Polarimetric Synthetic Aperture Radar Images
    Doulgeris, Anthony P.
    Anfinsen, Stian Normann
    Eltoft, Torbjorn
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10): : 3665 - 3676
  • [8] Fan LS, 2005, IEEE 2005 INTERNATIONAL SYMPOSIUM ON MICROWAVE, ANTENNA, PROPAGATION AND EMC TECHNOLOGIES FOR WIRELESS COMMUNICATIONS PROCEEDINGS, VOLS 1 AND 2, P6
  • [9] A Model for the Backscattering From a Canonical Ship in SAR Imagery
    Iervolino, Pasquale
    Guida, Raffaella
    Whittaker, Philip
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (03) : 1163 - 1175
  • [10] Larsen Richard J., 2011, Introduction to Mathematical Statistics and Its Applications