Multiple linear regression model under nonnormality

被引:58
作者
Islam, MQ [1 ]
Tiku, ML
机构
[1] Cankaya Univ, Dept Econ, TR-06530 Ankara, Turkey
[2] Middle E Tech Univ, Dept Stat, TR-06531 Ankara, Turkey
[3] McMaster Univ, Hamilton, ON L8S 4L8, Canada
关键词
multiple linear regression; modified likelihood; robustness; outliers; M estimators; least squares; nonnormality; hypothesis testing;
D O I
10.1081/STA-200031519
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider multiple linear regression models under nonnormality. We derive modified maximum likelihood estimators (MMLEs) of the parameters and show that they are efficient and robust. We show that the least squares esimators are considerably less efficient. We compare the efficiencies of the MMLEs and the M estimators for symmetric distributions and show that, for plausible alternatives to an assumed distribution, the former are more efficient. We provide real-life examples.
引用
收藏
页码:2443 / 2467
页数:25
相关论文
共 50 条
[41]   Model to estimate municipal fiscal performance using the multiple linear regression method [J].
Delgado, Guadalupe de Jesus Madrigal .
ECONOMIA SOCIEDAD Y TERRITORIO, 2024, 24 (74)
[42]   Evaluation of a multiple linear regression model and SARIMA model in forecasting 7Be air concentrations [J].
del Carmen Bas, Maria ;
Ortiz, Josefina ;
Ballesteros, Luisa ;
Martorell, Sebastian .
CHEMOSPHERE, 2017, 177 :326-333
[43]   Combined model based on optimized multi-variable grey model and multiple linear regression [J].
Xiong, Pingping ;
Dang, Yaoguo ;
Wu, Xianghua ;
Li, Xuemei .
JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2011, 22 (04) :615-620
[44]   Combined model based on optimized multi-variable grey model and multiple linear regression [J].
Pingping Xiong Yaoguo Dang Xianghua Wu and Xuemei Li College of Economics and ManagementNanjing University of Aeronautics and AstronauticsNanjing PRChinaCollege of Mathematics and PhysicsNanjing University of Information Science and TechnologyNanjing PRChina .
JournalofSystemsEngineeringandElectronics, 2011, 22 (04) :615-620
[45]   Fractal characteristics of geomorphological heterogeneity in Xisha Islands waters under Multiple Linear Regression [J].
Wang, Xuli .
EARTH SCIENCES RESEARCH JOURNAL, 2021, 25 (01) :41-48
[46]   Robust Winsorized Shrinkage Estimators for Linear Regression Model [J].
Jadhav, Nileshkumar H. ;
Kashid, Dattatraya N. .
JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2014, 13 (02) :131-150
[47]   A Modified Robust Estimator under Heteroscedasticity and Unusual Observations for Linear Regression Model [J].
Mubarik, Shagufta ;
Ilyas, Maryam .
ROMANIAN STATISTICAL REVIEW, 2021, (03) :23-36
[48]   An iterative procedure for perpendicular offsets linear least squares fitting with extension to multiple linear regression [J].
Sampaio, JHB .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (01) :91-98
[49]   Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system [J].
Fang, Tingting ;
Lahdelma, Risto .
APPLIED ENERGY, 2016, 179 :544-552
[50]   SUPERIORITY OF ARTIFICIAL NEURAL NETWORK MODEL OVER MULTIPLE LINEAR REGRESSION MODEL FOR PREDICTING BROCCOLI YIELD [J].
Mishra, Minakshi ;
Thakur, Ratan Kumar .
INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2020, 16 (02) :757-762