Multiple linear regression model under nonnormality

被引:58
作者
Islam, MQ [1 ]
Tiku, ML
机构
[1] Cankaya Univ, Dept Econ, TR-06530 Ankara, Turkey
[2] Middle E Tech Univ, Dept Stat, TR-06531 Ankara, Turkey
[3] McMaster Univ, Hamilton, ON L8S 4L8, Canada
关键词
multiple linear regression; modified likelihood; robustness; outliers; M estimators; least squares; nonnormality; hypothesis testing;
D O I
10.1081/STA-200031519
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider multiple linear regression models under nonnormality. We derive modified maximum likelihood estimators (MMLEs) of the parameters and show that they are efficient and robust. We show that the least squares esimators are considerably less efficient. We compare the efficiencies of the MMLEs and the M estimators for symmetric distributions and show that, for plausible alternatives to an assumed distribution, the former are more efficient. We provide real-life examples.
引用
收藏
页码:2443 / 2467
页数:25
相关论文
共 50 条
[31]   The OWA operator in multiple linear regression [J].
Flores-Sosa M. ;
Avilés-Ochoa E. ;
Merigó J.M. ;
Kacprzyk J. .
Applied Soft Computing, 2022, 124
[32]   Robustness of the test of a product moment correlation coefficient under nonnormality [J].
Yanagida T. ;
Rasch D. ;
Kubinger K.D. ;
Schneider B. .
Journal of Statistical Theory and Practice, 2017, 11 (3) :493-502
[33]   A Comparative Study of Outlier Detection Procedures in Multiple Linear Regression [J].
Ampanthong, Pimpan ;
Suwattee, Prachoom .
IMECS 2009: INTERNATIONAL MULTI-CONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2009, :704-709
[34]   Forecast Model for Price of Gold: Multiple Linear Regression with Principal Component Analysis [J].
Manoj, Jyothi ;
Suresh, K. K. .
THAILAND STATISTICIAN, 2019, 17 (01) :125-131
[35]   Statistical Learning and Multiple Linear Regression Model for Network Selection using MIH [J].
Rahil, Ahmad ;
Mbarek, Nader ;
Togni, Olivier ;
Atieh, Mirna ;
Fouladkar, Ali .
2014 THIRD INTERNATIONAL CONFERENCE ON E-TECHNOLOGIES AND NETWORKS FOR DEVELOPMENT (ICEND), 2014,
[36]   Time Series Calibration Model for NO2 based on Multiple Linear Regression [J].
Xu, Yan ;
Lan, Shuangting .
2019 INTERNATIONAL CONFERENCE ON ECONOMIC MANAGEMENT AND MODEL ENGINEERING (ICEMME 2019), 2019, :313-316
[37]   Hourly PV production estimation by means of an exportable multiple linear regression model [J].
Trigo-Gonzalez, Mauricio ;
Bathes, F. J. ;
Alonso-Montesinos, Joaquin ;
Ferrada, Pablo ;
del Sagrado, J. ;
Martinez-Durban, M. ;
Cortes, Marcelo ;
Portillo, Carlos ;
Marzo, Aitor .
RENEWABLE ENERGY, 2019, 135 :303-312
[38]   A nonlinear model for a capacitated stochastic transportation network using multiple linear regression [J].
Shiripour, Saber ;
Mahdavi, Iraj ;
Mahdavi-Amiri, Nezam .
INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, 2016, 11 (04) :252-261
[39]   Forecast generation model of municipal solid waste using multiple linear regression [J].
Araiza-Aguilar, J. A. ;
Rojas-Valencia, M. N. ;
Aguilar-Vera, R. A. .
GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM, 2020, 6 (01) :1-14
[40]   Model to estimate municipal fiscal performance using the multiple linear regression method [J].
Delgado, Guadalupe de Jesus Madrigal .
ECONOMIA SOCIEDAD Y TERRITORIO, 2024, 24 (74)