Multiple linear regression model under nonnormality

被引:58
作者
Islam, MQ [1 ]
Tiku, ML
机构
[1] Cankaya Univ, Dept Econ, TR-06530 Ankara, Turkey
[2] Middle E Tech Univ, Dept Stat, TR-06531 Ankara, Turkey
[3] McMaster Univ, Hamilton, ON L8S 4L8, Canada
关键词
multiple linear regression; modified likelihood; robustness; outliers; M estimators; least squares; nonnormality; hypothesis testing;
D O I
10.1081/STA-200031519
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider multiple linear regression models under nonnormality. We derive modified maximum likelihood estimators (MMLEs) of the parameters and show that they are efficient and robust. We show that the least squares esimators are considerably less efficient. We compare the efficiencies of the MMLEs and the M estimators for symmetric distributions and show that, for plausible alternatives to an assumed distribution, the former are more efficient. We provide real-life examples.
引用
收藏
页码:2443 / 2467
页数:25
相关论文
共 50 条
[21]   Application of Multiple Linear Regression and Geographically Weighted Regression Model for Prediction of PM2.5 [J].
Tripta Narayan ;
Tanushree Bhattacharya ;
Soubhik Chakraborty ;
Swapan Konar .
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92 :217-229
[22]   Iron Ore Price Prediction Based on Multiple Linear Regression Model [J].
Wang, Yanyi ;
Guo, Zhenwei ;
Zhang, Yunrui ;
Hu, Xiangping ;
Xiao, Jianping .
SUSTAINABILITY, 2023, 15 (22)
[23]   The Impact of Population Aging in China Based on Multiple Linear Regression Model [J].
Tao, Yi ;
Liu, Ying ;
La, Rong-Zhuma ;
Liang, Ting ;
Gao, Tian-Xiang .
4TH INTERNATIONAL CONFERENCE ON ADVANCED EDUCATION AND MANAGEMENT, 2017, :636-641
[24]   On Higher Education Tuition Based on the Model of Multiple Linear Regression in China [J].
Liu Dequan ;
Wang Wei ;
Zhang Aiting ;
Gu Zhengbing .
PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, :1278-1281
[25]   Estimation of Multiple Linear Regression Model with Twice-Censored Data [J].
Shen, Pao-Sheng .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (21) :4631-4640
[26]   Algorithm for Combining Robust and Bootstrap In Multiple Linear Model Regression (SAS) [J].
Amir, Wan Muhamad ;
Shafiq, Mohamad ;
Rahim, Hanafi A. ;
Liza, Puspa ;
Aleng, Azlida ;
Abdullah, Zailani .
JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2016, 15 (01) :884-892
[27]   Predictive Big Data Analytics Using Multiple Linear Regression Model [J].
Khine, Kyi Lai Lai ;
Nyunt, Thi Thi Soe .
BIG DATA ANALYSIS AND DEEP LEARNING APPLICATIONS, 2019, 744 :9-19
[28]   A comparative study of estimation methods for parameters in multiple linear regression model [J].
Cankaya, S ;
Kayaalp, GT ;
Sangun, L ;
Tahtali, Y ;
Akar, M .
JOURNAL OF APPLIED ANIMAL RESEARCH, 2006, 29 (01) :43-47
[29]   A Constrained Linear Estimator for Multiple Regression [J].
Davis-Stober, Clintin P. ;
Dana, Jason ;
Budescu, David V. .
PSYCHOMETRIKA, 2010, 75 (03) :521-541
[30]   A Constrained Linear Estimator for Multiple Regression [J].
Clintin P. Davis-Stober ;
Jason Dana ;
David V. Budescu .
Psychometrika, 2010, 75 :521-541