Multiple linear regression model under nonnormality

被引:56
作者
Islam, MQ [1 ]
Tiku, ML
机构
[1] Cankaya Univ, Dept Econ, TR-06530 Ankara, Turkey
[2] Middle E Tech Univ, Dept Stat, TR-06531 Ankara, Turkey
[3] McMaster Univ, Hamilton, ON L8S 4L8, Canada
关键词
multiple linear regression; modified likelihood; robustness; outliers; M estimators; least squares; nonnormality; hypothesis testing;
D O I
10.1081/STA-200031519
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider multiple linear regression models under nonnormality. We derive modified maximum likelihood estimators (MMLEs) of the parameters and show that they are efficient and robust. We show that the least squares esimators are considerably less efficient. We compare the efficiencies of the MMLEs and the M estimators for symmetric distributions and show that, for plausible alternatives to an assumed distribution, the former are more efficient. We provide real-life examples.
引用
收藏
页码:2443 / 2467
页数:25
相关论文
共 50 条
  • [21] The Impact of Population Aging in China Based on Multiple Linear Regression Model
    Tao, Yi
    Liu, Ying
    La, Rong-Zhuma
    Liang, Ting
    Gao, Tian-Xiang
    4TH INTERNATIONAL CONFERENCE ON ADVANCED EDUCATION AND MANAGEMENT, 2017, : 636 - 641
  • [22] Estimation of Multiple Linear Regression Model with Twice-Censored Data
    Shen, Pao-Sheng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (21) : 4631 - 4640
  • [23] Application of Multiple Linear Regression and Geographically Weighted Regression Model for Prediction of PM2.5
    Narayan, Tripta
    Bhattacharya, Tanushree
    Chakraborty, Soubhik
    Konar, Swapan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (02) : 217 - 229
  • [24] A comparative study of estimation methods for parameters in multiple linear regression model
    Cankaya, S
    Kayaalp, GT
    Sangun, L
    Tahtali, Y
    Akar, M
    JOURNAL OF APPLIED ANIMAL RESEARCH, 2006, 29 (01) : 43 - 47
  • [25] Estimation and hypothesis testing in multivariate linear regression models under non normality
    Islam, M. Qamarul
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (17) : 8521 - 8543
  • [26] Particle swarm optimized multiple regression linear model for data classification
    Satapathy, Suresh Chandra
    Murthy, J. V. R.
    Reddy, P. V. G. D. Prasad
    Misra, B. B.
    Dash, P. K.
    Panda, G.
    APPLIED SOFT COMPUTING, 2009, 9 (02) : 470 - 476
  • [27] Permeability Model of Liquid Microcapsule Based on Multiple Linear Regression Method
    Xu, Xiuqing
    Li, Fagen
    Zhao, Xuehui
    Yang, Fang
    COATINGS, 2023, 13 (08)
  • [28] Evaluation of a Multiple Linear Regression Model for the Prediction of Panicle Number in Rice
    Yamauchi, Yusaku
    Hirai, Yasumaru
    Saruta, Keisuke
    Yamakawa, Takeo
    Inoue, Eiji
    Okayasu, Takashi
    Mitsuoka, Muneshi
    JOURNAL OF THE FACULTY OF AGRICULTURE KYUSHU UNIVERSITY, 2012, 57 (02): : 421 - 426
  • [29] Robustness of the test of a product moment correlation coefficient under nonnormality
    Yanagida T.
    Rasch D.
    Kubinger K.D.
    Schneider B.
    Journal of Statistical Theory and Practice, 2017, 11 (3) : 493 - 502
  • [30] A Constrained Linear Estimator for Multiple Regression
    Davis-Stober, Clintin P.
    Dana, Jason
    Budescu, David V.
    PSYCHOMETRIKA, 2010, 75 (03) : 521 - 541