Density propagation based adaptive multi-density clustering algorithm

被引:11
作者
Wang, Yizhang [1 ,2 ]
Pang, Wei [3 ]
Zhou, You [1 ,2 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun, Jilin, Peoples R China
[2] Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun, Jilin, Peoples R China
[3] Univ Aberdeen, Dept Comp Sci, Aberdeen, Scotland
来源
PLOS ONE | 2018年 / 13卷 / 07期
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
AFFINITY PROPAGATION; FAST SEARCH; PEAKS; SYSTEM; FIND;
D O I
10.1371/journal.pone.0198948
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The performance of density based clustering algorithms may be greatly influenced by the chosen parameter values, and achieving optimal or near optimal results very much depends on empirical knowledge obtained from previous experiments. To address this limitation, we propose a novel density based clustering algorithm called the Density Propagation based Adaptive Multi-density clustering (DPAM) algorithm. DPAM can adaptively cluster spatial data. In order to avoid manual intervention when choosing parameters of density clustering and still achieve high performance, DPAM performs clustering in three stages: (1) generate the micro-clusters graph, (2) density propagation with redefinition of between-class margin and intra-class cohesion, and (3) calculate regional density. Experimental results demonstrated that DPAM could achieve better performance than several state-of-the-art density clustering algorithms in most of the tested cases, the ability of no parameters needing to be adjusted enables the proposed algorithm to achieve promising performance.
引用
收藏
页数:13
相关论文
共 26 条
  • [1] [Anonymous], INT C SERV SYST SERV
  • [2] Competitive Strategies for Online Clique Clustering
    Chrobak, Marek
    Duerr, Christoph
    Nilsson, Bengt J.
    [J]. ALGORITHMS AND COMPLEXITY (CIAC 2015), 2015, 9079 : 101 - 113
  • [3] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197
  • [4] Density peaks clustering using geodesic distances
    Du, Mingjing
    Ding, Shifei
    Xu, Xiao
    Xue, Yu
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (08) : 1335 - 1349
  • [5] Fabijan Aleksander, 2013, Algorithms and Complexity. 8th International Conference, CIAC 2013. Proceedings, P221, DOI 10.1007/978-3-642-38233-8_19
  • [6] Clustering by passing messages between data points
    Frey, Brendan J.
    Dueck, Delbert
    [J]. SCIENCE, 2007, 315 (5814) : 972 - 976
  • [7] Text Clustering with Seeds Affinity Propagation
    Guan, Renchu
    Shi, Xiaohu
    Marchese, Maurizio
    Yang, Chen
    Liang, Yanchun
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2011, 23 (04) : 627 - 637
  • [8] Joshi A, 2013, INT J ADV RES COMPUT, V3, P155
  • [9] Kameshwaran K., 2014, INT J COMPUTER SCI I, V5, P2272
  • [10] Evolutionary Multiobjective Clustering and Its Applications to Patient Stratification
    Li, Xiangtao
    Wong, Ka-Chun
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (05) : 1680 - 1693