Stability results for a Cauchy problem for an elliptic equation

被引:11
作者
Hao, Dinh Nho
Hien, Pham Minh
Sahli, H.
机构
[1] Hanoi Inst Math, Hanoi 10307, Vietnam
[2] Free Univ Brussels, Dept Elect & Informat Proc, B-1050 Brussels, Belgium
关键词
D O I
10.1088/0266-5611/23/1/024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p is an element of (1, infinity], phi is an element of L-p (R) and epsilon < E be given non-negative constants. In this paper, we prove stability estimates of Holder type for the Cauchy problem [GRAPHIC] subject to the constraint [GRAPHIC] Furthermore, we suggest a marching difference scheme for solving the problem in a stable way. Numerical examples are given which show the efficiency of the method.
引用
收藏
页码:421 / 461
页数:41
相关论文
共 22 条
[1]  
Achieser NI., 1992, THEORY APPROXIMATION
[2]  
ACHIESER NI, 1967, VORLESUNGEN APPROXIM, V2
[3]  
AO D. N. H\, 1992, Banach Center Publ., V27, P111
[4]  
DUNG D, 1992, J APPROX THEORY, V70, P1
[5]   Stability results for the Cauchy problem for the Laplace equation in a strip [J].
Hào, DN ;
Hien, PM .
INVERSE PROBLEMS, 2003, 19 (04) :833-844
[6]   A MOLLIFICATION METHOD FOR ILL-POSED PROBLEMS [J].
HAO, DN .
NUMERISCHE MATHEMATIK, 1994, 68 (04) :469-506
[7]   A mollification method for a noncharacteristic Cauchy problem for a parabolic equation [J].
Hao, DN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (03) :873-909
[8]   STABLE NUMERICAL FRACTIONAL DIFFERENTIATION BY MOLLIFICATION [J].
HAO, DN ;
REINHARDT, HJ ;
SEIFFARTH, F .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1994, 15 (5-6) :635-659
[9]  
HELLWIG G, 1977, PARTIAL DIFFERENTIAL, P151
[10]  
HELLWIG G, 1957, MATH Z, V66, P371