Resolution Enhancement in Terahertz Digital In-line Holography by Sparsity-Based Extrapolation

被引:6
作者
Li, Zeyu [1 ,2 ]
Yan, Qiang [1 ,2 ]
Qin, Yu [1 ,2 ]
Kong, Weipeng [1 ,2 ]
Zou, Mingrui [1 ,2 ]
Zhou, Xun [1 ,2 ]
You, Zhisheng [3 ,4 ]
Cheng, Peng [4 ]
机构
[1] CAEP, Res Ctr Laser Fus, Mianyang 621900, Sichuan, Peoples R China
[2] CAEP, Microsyst & Terahertz Res Ctr, Chengdu 610200, Peoples R China
[3] Sichuan Univ, Natl Key Lab Fundamental Sci Synthet Vis, Chengdu 610065, Peoples R China
[4] Sichuan Univ, Sch Aeronaut & Astronaut, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
In-line holography; Sparsity; Extrapolation; Super resolution; Terahertz imaging; SYNTHETIC-APERTURE; PHASE; RECONSTRUCTION; IMAGE; DECONVOLUTION; MICROSCOPY;
D O I
10.1007/s10762-021-00796-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a generalized extrapolation framework as a constrained optimization problem to enhance the resolution in terahertz digital in-line holography. The alternating minimization method is employed to iteratively extrapolate the hologram beyond the actually detecting area and to reconstruct the complex amplitude distribution of the object wavefront. Within this framework, we propose a sparsity-based extrapolation model based on L-1-norm, where the object mask is not required and the generalized positive absorption constraint can be utilized. This work can achieve super-resolution reconstruction completely by numerical postprocessing without any modification to the imaging system. Both the simulation and experiments on the terahertz band demonstrate the feasibility of the proposed algorithms, and the limit of resolution can be extended by a factor of 1.67.
引用
收藏
页码:479 / 492
页数:14
相关论文
共 28 条
[1]   Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography [J].
Balbekin, Nikolay S. ;
Kulya, Maksim S. ;
Belashov, Andrey V. ;
Gorodetsky, Andrei ;
Petrov, Nikolay V. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[2]   Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution [J].
Bishara, Waheb ;
Su, Ting-Wei ;
Coskun, Ahmet F. ;
Ozcan, Aydogan .
OPTICS EXPRESS, 2010, 18 (11) :11181-11191
[3]   Microscopy image resolution improvement by deconvolution of complex fields [J].
Cotte, Yann ;
Toy, M. Fatih ;
Pavillon, Nicolas ;
Depeursinge, Christian .
OPTICS EXPRESS, 2010, 18 (19) :19462-19478
[4]   Three-Dimensional High-Resolution Digital Inline Hologram Reconstruction with a Volumetric Deconvolution Method [J].
Eom, Junseong ;
Moon, Sangjun .
SENSORS, 2018, 18 (09)
[5]   Resolution enhancement method for lensless in-line holographic microscope with spatially-extended light source [J].
Feng, Shaodong ;
Wu, Jigang .
OPTICS EXPRESS, 2017, 25 (20) :24735-24744
[6]   PHASE RETRIEVAL ALGORITHMS - A COMPARISON [J].
FIENUP, JR .
APPLIED OPTICS, 1982, 21 (15) :2758-2769
[7]   A NEW MICROSCOPIC PRINCIPLE [J].
GABOR, D .
NATURE, 1948, 161 (4098) :777-778
[8]  
GERCHBERG RW, 1972, OPTIK, V35, P237
[9]   An Augmented Lagrangian Method for Complex-Valued Compressed SAR Imaging [J].
Guven, H. Emre ;
Gungor, Alper ;
Cetin, Mujdat .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2016, 2 (03) :235-250
[10]  
Haeffele Benjamin D., 2017, Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017. 20th International Conference. Proceedings: LNCS 10434, P109, DOI 10.1007/978-3-319-66185-8_13