Complex Symmetric Toeplitz Operators

被引:14
作者
Bu, Qinggang [1 ]
Chen, Yong [2 ]
Zhu, Sen [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
[2] Hangzhou Normal Univ, Dept Math, Hangzhou 311121, Peoples R China
关键词
Toeplitz operators; Hardy space; Complex symmetric operators;
D O I
10.1007/s00020-021-02629-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to study when a Toeplitz operator T-phi on the Hardy space H-2 of the unit disk is complex symmetric, that is, T-phi admits a symmetric matrix representation relative to some orthonormal basis of H-2. For certain trigonometric symbols., we give necessary and sufficient conditions for T-phi to be complex symmetric. In particular, we show that their complex symmetry coincides with the property "unitary equivalence to their transposes".
引用
收藏
页数:19
相关论文
共 28 条
  • [1] Symbols of truncated Toeplitz operators
    Baranov, Anton
    Bessonov, Roman
    Kapustin, Vladimir
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (12) : 3437 - 3456
  • [2] Bounded symbols and Reproducing Kernel Thesis for truncated Toeplitz operators
    Baranov, Anton
    Chalendar, Isabelle
    Fricain, Emmanuel
    Mashreghi, Javad
    Timotin, Dan
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (10) : 2673 - 2701
  • [3] Truncated Toeplitz Operators: Spatial Isomorphism, Unitary Equivalence, and Similarity
    Cima, Joseph A.
    Garcia, Stephan Ramon
    Ross, William T.
    Wogen, Warren R.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (02) : 595 - 620
  • [4] Dual truncated Toeplitz operators
    Ding, Xuanhao
    Sang, Yuanqi
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (01) : 929 - 946
  • [5] Garcia S.R., 2013, Blaschke Products and Their Applications, V65, P265, DOI DOI 10.1007/978-1-4614-5341-315
  • [6] Garcia S.R., 2014, Oper. Theory Adv. Appl, P171
  • [7] Garcia S. R., 2016, INTRO MODEL SPACES T
  • [8] Garcia SR, 2006, CONTEMP MATH, V393, P67
  • [9] Complex symmetric operators and applications
    Garcia, SR
    Putinar, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) : 1285 - 1315
  • [10] Garcia SR., 2013, OPER, V236, P181