Redox regulation of thylakoid protein phosphorylation

被引:94
|
作者
Aro, EM [1 ]
Ohad, I
机构
[1] Univ Turku, Dept Biol, FIN-20014 Turku, Finland
[2] Hebrew Univ Jerusalem, Dept Biol Chem, IL-91904 Jerusalem, Israel
关键词
D O I
10.1089/152308603321223540
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The photosystem II of chloroplast thylakoid membranes contains several proteins phosphorylated by redox-activated protein kinases. The mechanism of the reversible activation of the light-harvesting antenna complex II (LHCII) kinase(s) is one of the best understood and related to the regulation of energy transfer to photosystem II or I, thereby optimizing their relative excitation (state transition). The deactivated LHCII protein kinase(s) is associated with cytochrome b(6)f and dissociates from the complex upon activation. Activation of the LHCII protein kinase occurs via dynamic conformational changes in the cytochrome b(6)f complex taking place during plastoquinol oxidation. Deactivation of the kinase involves its reassociation with an oxidized cytochrome complex. A fine-tuning redox-dependent regulatory loop inhibits the activation of the kinase via reduction of protein disulfide groups, possibly involving the thioredoxin complex. Phosphorylation of LHCII is further modulated by light-induced conformational changes of the LHCII substrate. The reversible phosphorylation of LHCII and other thylakoid phosphoproteins, catalyzed by respective kinases and phosphatases, is under strict regulation in response to environmental changes.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 50 条