Second-order perturbations of Kerr black holes: Formalism and reconstruction of the first-order metric

被引:38
|
作者
Loutrel, Nicholas [1 ]
Ripley, Justin L. [1 ]
Giorgi, Elena [2 ,3 ]
Pretorius, Frans [1 ,3 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[3] Princeton Univ, Princeton Grav Initiat, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
GRAVITATIONAL-RADIATION; WAVES; FIELD;
D O I
10.1103/PhysRevD.103.104017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Motivated by gravitational wave observations of binary black hole mergers, we present a procedure to compute the leading-order nonlinear gravitational wave interactions around a Kerr black hole. We describe the formalism used to derive the equations for second-order perturbations. We develop a procedure that allows us to reconstruct the first-order metric perturbation solely from knowledge of the solution to the first-order Teukolsky equation, without the need of Hertz potentials. Finally, we illustrate this metric reconstruction procedure in the asymptotic limit for the first-order quasinormal modes of Kerr. In a companion paper [J. L. Ripley et al., Phys. Rev. D 103, 104018 (2021)] we present a numerical implementation of these ideas.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Numerical computation of second-order vacuum perturbations of Kerr black holes
    Ripley, Justin L.
    Loutrel, Nicholas
    Giorgi, Elena
    Pretorius, Frans
    PHYSICAL REVIEW D, 2021, 103 (10)
  • [2] Second-order Lagrangians admitting a first-order Hamiltonian formalism
    Rosado Maria, E.
    Munoz Masque, J.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (02) : 357 - 397
  • [3] Second-order Lagrangians admitting a first-order Hamiltonian formalism
    E. Rosado María
    J. Muñoz Masqué
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 357 - 397
  • [4] Integrability of second-order Lagrangians admitting a first-order Hamiltonian formalism
    Rosado Maria, E.
    Munoz Masque, J.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 164 - 177
  • [5] On Second-Order Parabolic and Hyperbolic Perturbations of a First-Order Hyperbolic System
    A. A. Zlotnik
    B. N. Chetverushkin
    Doklady Mathematics, 2022, 106 : 308 - 314
  • [6] On Second-Order Parabolic and Hyperbolic Perturbations of a First-Order Hyperbolic System
    Zlotnik, A. A.
    Chetverushkin, B. N.
    DOKLADY MATHEMATICS, 2022, 106 (02) : 308 - 314
  • [7] Interpretation of the first-order formalism of f(R)-type gravity and the corresponding second-order formalism
    Ezawa, Y
    Iwasaki, H
    Ohkuwa, Y
    Uegaki, T
    Yamada, N
    Yano, T
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (12): : 1141 - 1148
  • [8] First-Order and Second-Order Ambiguity Aversion
    Lang, Matthias
    MANAGEMENT SCIENCE, 2017, 63 (04) : 1254 - 1269
  • [9] Gravitational radiation from Schwarzschild black holes: the second-order perturbation formalism
    Gleiser, RJ
    Nicasio, CO
    Price, RH
    Pullin, J
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 325 (02): : 42 - 81
  • [10] Fractional order capacitor in first-order and second-order filter
    Sengar K.
    Kumar A.
    Micro and Nanosystems, 2020, 12 (01) : 75 - 78