The staggered heterojunction of CeO2/CdS nanocomposite for enhanced photocatalytic activity

被引:33
作者
Channei, Duangdao [1 ]
Chansaenpak, Kantapat [2 ]
Jannoey, Panatda [3 ]
Phanichphant, Sukon [4 ]
机构
[1] Naresuan Univ, Dept Chem, Fac Sci, Phitsanulok 65000, Thailand
[2] Natl Sci & Technol Dev Agcy, Natl Nanotechnol Ctr, Thailand Sci Pk, Pathum Thani 12120, Thailand
[3] Naresuan Univ, Dept Biochem, Fac Med Sci, Phitsanulok 65000, Thailand
[4] Chiang Mai Univ, Mat Sci Res Ctr, Fac Sci, Chiang Mai 50200, Thailand
关键词
Nanocomposites; Photocatalysts; Cerium dioxide; Cadmium sulfide; Methylene blue; CHARGE-TRANSFER; CARBON NITRIDE; LIGHT; DRIVEN; MECHANISM; REMOVAL; NANOMATERIALS; CONDUCTIVITY; CONSTRUCTION; DEGRADATION;
D O I
10.1016/j.solidstatesciences.2019.105951
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
To modify the photocatalytic activity of CeO2, CdS nanoparticles was composited with CeO2 through a homogeneous precipitation method. The crystal structure, composition, morphology, and optical properties of CdS/CeO2 composite were analyzed in detail. The results found that CdS/CeO2 composite consisted of the cubic fluorite structure of CeO2 and wurtzite hexagonal structure of CdS. Meanwhile, TEM magnification of CdS/CeO2 composite exhibited clear lattice fringe corresponding to [hkl] plane of CeO2 and CdS. UV-visible absorption spectra showed that CdS extended the adsorption edge of the CdS/CeO2 composite to longer visible region, which related to the decrease of band gap. The coexistence of staggered type II band alignment in the CdS/CeO2 composite facilitated the charge separation of visible-excited electrons and holes, thereby decreasing the recombination and improving the efficient photocatalytic activity for methylene blue dye degradation, with the apparent rate constant (0.0102 min(-1)) which is about 7 times higher than that of pure CeO2 (k=0.0014 min(-1)).
引用
收藏
页数:8
相关论文
共 43 条
[1]   Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications [J].
Ansari, Sajid Ali ;
Khan, Mohammad Mansoob ;
Ansari, Mohd Omaish ;
Kalathil, Shafeer ;
Lee, Jintae ;
Cho, Moo Hwan .
RSC ADVANCES, 2014, 4 (32) :16782-16791
[2]   Photocatalytic Degradation of Methyl Orange by CeO2 and Fe-doped CeO2 Films under Visible Light Irradiation [J].
Channei, D. ;
Inceesungvorn, B. ;
Wetchakun, N. ;
Ukritnukun, S. ;
Nattestad, A. ;
Chen, J. ;
Phanichphant, S. .
SCIENTIFIC REPORTS, 2014, 4
[3]   Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation [J].
da Silva, CG ;
Faria, JL .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2003, 155 (1-3) :133-143
[4]   Dielectric relaxation, AC conductivity behavior and its relation to microstructure in mechanochemically synthesized Mn-doped CeO2 nanocrystals [J].
Dhara, Arup ;
Sain, Sumanta ;
Maji, Prasenjit ;
Das, Sachindranath ;
Pradhan, Swapan Kumar .
SOLID STATE SCIENCES, 2019, 87 :93-100
[5]  
Efendi Aula Fitra, 2015, Materials Science Forum, V827, P56, DOI 10.4028/www.scientific.net/MSF.827.56
[6]  
Ertis I. F., 2016, INT J CHEM REACT ENG, V15, P15
[7]   Synthesis of heterostructured Bi2O3-CeO2-ZnO photocatalyst with enhanced sunlight photocatalytic activity [J].
Hezam, Abdo ;
Namratha, K. ;
Drmosh, Q. A. ;
Yamani, Z. H. ;
Byrappa, K. .
CERAMICS INTERNATIONAL, 2017, 43 (06) :5292-5301
[8]   Preparation and photocatalytic properties of composite CdS nanoparticles-titanium dioxide particles [J].
Hirai, T ;
Suzuki, K ;
Komasawa, I .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 244 (02) :262-265
[9]   Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique [J].
Ishibashi, K ;
Fujishima, A ;
Watanabe, T ;
Hashimoto, K .
ELECTROCHEMISTRY COMMUNICATIONS, 2000, 2 (03) :207-210
[10]   Effect of Ti Substrate Ion Implantation on the Physical Properties of Anodic TiO2 Nanotubes [J].
Jedi-Soltanabadi, Zahra ;
Ghoranneviss, Mahmood ;
Ghorannevis, Zohreh ;
Akbari, Hossein .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 72 (05) :604-609