A Dempster-Shafer evidence theory-based approach to object classification on multispectral/hyperspectral images

被引:0
作者
Popov, Mikhail A. [1 ]
Topolnitskiy, Maxim V. [1 ]
机构
[1] Natl Acad Sci Ukraine, Sci Ctr Aerosp Res Earth, Kiev, Ukraine
来源
2014 10TH INTERNATIONAL CONFERENCE ON DIGITAL TECHNOLOGIES (DT) | 2014年
关键词
object classification; multispectral / hyperspectral images; Dempster-Shafer evidence theory;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The algorithm for object classification on multispectral / hyperspectral images based on the Dempster-Shafer evidence theory is represented. The algorithm allows detecting not only separate classes but also their composition, i.e. takes into account the "mixed" pixels inherent in the presence of medium spatial resolution images.
引用
收藏
页码:285 / 289
页数:5
相关论文
共 8 条
[1]  
[Anonymous], REMOTE SENSING EARTH
[2]  
Borengasser M., 2008, Hyperspectral Remote Sensing - Principles and Applications
[3]  
DEMPSTER AP, 1968, J ROY STAT SOC B, V30, P205
[4]   A New Method to Determine BPA in Evidence Theory [J].
Jiang, Wen ;
Deng, Yong ;
Peng, Jinye .
JOURNAL OF COMPUTERS, 2011, 6 (06) :1162-1167
[5]   Application of Dempster-Shafer evidence theory to unsupervised classification in multisource remote sensing [J].
LeHegaratMascle, S ;
Bloch, I ;
VidalMadjar, D .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (04) :1018-1031
[6]  
Shafer G., 1976, MATH THEORY EVIDENCE, V42, DOI DOI 10.1080/00401706.1978.10489628
[7]   BELIEF FUNCTIONS - THE DISJUNCTIVE RULE OF COMBINATION AND THE GENERALIZED BAYESIAN THEOREM [J].
SMETS, P .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1993, 9 (01) :1-35
[8]  
Yaghlane BB, 2002, INT J APPROX REASON, V31, P31, DOI 10.1016/S0888-613X(02)00072-5