Input Design for Kernel-Based System Identification From the Viewpoint of Frequency Response

被引:18
|
作者
Fujimoto, Yusuke [1 ]
Maruta, Ichiro [1 ]
Sugie, Toshiharu [1 ]
机构
[1] Kyoto Univ, Dept Syst Sci, Grad Sch Informat, Kyoto 6068501, Japan
关键词
Identification for control; input design; machine learning; system identification;
D O I
10.1109/TAC.2018.2791464
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses a method for designing input sequences for kernel-based system identification methods from the frequency perspective. The goal of this paper is to minimize the posterior uncertainty of the spectrum over the frequency band of the interest. A tractable criterion for this purpose is proposed, which is related to the so-called Bayesian A-optimality. An online algorithm that gives a suboptimal input for this criterion is proposed. Moreover, it is shown that the optimal solution can be obtained in an offline manner under a certain condition. The effectiveness of these methods is demonstrated through numerical simulations.
引用
收藏
页码:3075 / 3082
页数:8
相关论文
共 50 条
  • [41] Kernel-based methods for Volterra series identification
    Libera, Alberto Dalla
    Carli, Ruggero
    Pillonetto, Gianluigi
    AUTOMATICA, 2021, 129
  • [42] Kernel-Based Models for System Analysis
    van Waarde, Henk J.
    Sepulchre, Rodolphe
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (09) : 5317 - 5332
  • [43] A New Kernel-Based Approach for NonlinearSystem Identification
    Pillonetto, Gianluigi
    Quang, Minh Ha
    Chiuso, Alessandro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (12) : 2819 - 2847
  • [44] Input space versus feature space in kernel-based methods
    Schölkopf, B
    Mika, S
    Burges, CJC
    Knirsch, P
    Müller, KR
    Rätsch, G
    Smola, AJ
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05): : 1000 - 1017
  • [45] Input space versus feature space in kernel-based methods
    Mocrosoft Research Ltd., Cambridge CB2, United Kingdom
    不详
    不详
    不详
    IEEE Trans Neural Networks, 5 (1000-1017):
  • [46] Kernel-based linear system identification: When does the representer theorem hold?
    Pillonetto, Gianluigi
    Bisiacco, Mauro
    AUTOMATICA, 2024, 159
  • [47] Electric load forecasting - Using Kernel-based modeling for nonlinear system identification
    Espinoza, Marcelo
    Suykens, Johan Ax
    Belmans, Ronnie
    De Moor, Bart
    IEEE CONTROL SYSTEMS MAGAZINE, 2007, 27 (05): : 43 - 57
  • [48] Bayesian Kernel-Based Linear Control Design
    Scampicchio, Anna
    Chiuso, Alessandro
    Formentin, Simone
    Pillonetto, Gianluigi
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 822 - 827
  • [49] Stochastic input design problems for the frequency response in Bayesian identification
    Zheng, Man
    Ohta, Yoshito
    IFAC PAPERSONLINE, 2020, 53 (02): : 381 - 388
  • [50] Continuous-time linear time-varying system identification with a frequency-domain kernel-based estimator
    Lataire, John
    Pintelon, Rik
    Piga, Dario
    Toth, Roland
    IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (04): : 457 - 465