Infinitely many solutions for non-local problems with broken symmetry

被引:1
作者
Bartolo, Rossella [1 ]
De Napoli, Pablo L. [2 ,3 ]
Salvatore, Addolorata [4 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, CONICET, IMAS, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina
[4] Univ Bari Aldo Moro, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
关键词
Fractional Laplace operator; variational methods; perturbative method; CRITICAL-POINTS; OBSTACLE PROBLEM; BOUNDARY; EQUATIONS; MULTIPLICITY; REGULARITY;
D O I
10.1515/anona-2016-0106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to investigate the existence of solutions of the non-local elliptic problem {(-Delta)(s)u = vertical bar u vertical bar(p-2) u + h(x) in Omega, u = 0 on R-n \ Omega, where s is an element of (0, 1), n > 2 s, Omega is an open bounded domain of R-n with Lipschitz boundary partial derivative Omega, (-Delta)(s) is the non-local Laplacian operator, 2 < p < 2*(s) and h is an element of L-2 (Omega). This problem requires the study of the eigenvalue problem related to the fractional Laplace operator, with or without potential.
引用
收藏
页码:353 / 364
页数:12
相关论文
共 35 条