Forest mapping and monitoring in Africa using Sentinel-2 data and deep learning

被引:24
|
作者
Waldeland, Anders U. [1 ]
Trier, oivind Due [1 ]
Salberg, Arnt-Borre [1 ]
机构
[1] Norwegian Comp Ctr, Gaustadalleen 23A, NO-0373 Oslo, Norway
关键词
Forest monitoring; Deep learning; Sentinel-2; Forest height; Change detection; TREE HEIGHT;
D O I
10.1016/j.jag.2022.102840
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We propose and investigate a method for creating large scale forest height maps at 10 m resolution from Sentinel 2 data using deep neural networks. In addition, we demonstrate how clear-cutting events can be detected in a time series of the resulting forest height maps. The network architecture is a convolutional neural network based on the U-Net architecture. The 13 Sentinel-2 spectral bands are resampled to 10 m spatial resolution and input to the U-Net, which outputs a map with per-pixel forest height estimates. The network is trained with ground truth data acquired from airborne lidar scanning surveys from three different geographical regions. They cover different types of forests: lowland tropical rainforest in the Democratic Republic of Congo, Miombo woodlands (dry forest) in Liwale, Tanzania, and submontane tropical rainforest in Amani, Tanzania. We demonstrate that the trained network generalizes to new geographical regions within the African continent with a mean average error of 4.6 m. This is on-par with a previously published method's ability to generalize to new geographical regions within the same country. Clear-cutting events are detected using a t-test. The null-hypothesis of the t-test is that the forest height has not changed after any given point in time in the forest height time-series.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Deep Forest classifier for wetland mapping using the combination of Sentinel-1 and Sentinel-2 data
    Jamali, Ali
    Mahdianpari, Masoud
    Brisco, Brian
    Granger, Jean
    Mohammadimanesh, Fariba
    Salehi, Bahram
    GISCIENCE & REMOTE SENSING, 2021, 58 (07) : 1072 - 1089
  • [2] FOREST SEMANTIC SEGMENTATION BASED ON DEEP LEARNING USING SENTINEL-2 IMAGES
    Hizal, C.
    Gulsu, G.
    Akgun, H. Y.
    Kulavuz, B.
    Bakirman, T.
    Aydin, A.
    Bayram, B.
    8TH INTERNATIONAL CONFERENCE ON GEOINFORMATION ADVANCES, GEOADVANCES 2024, VOL. 48-4, 2024, : 229 - 236
  • [3] FIRE SCARS MAPPING OVER BRAZILIAN AMAZON FOREST BY EXPLOITING SENTINEL-2 DATA AND DEEP LEARNING
    Viviana Camacho-De Angulo, Yineth
    Rosa, Nicolas Cechinel
    Tatiana Solano-Correa, Yady
    Roisenberg, Mauro
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 2773 - 2776
  • [4] Deep learning-based building height mapping using Sentinel-1 and Sentinel-2 data
    Cai, Bowen
    Shao, Zhenfeng
    Huang, Xiao
    Zhou, Xuechao
    Fang, Shenghui
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 122
  • [5] Deep Learning Based Water Feature Mapping Using Sentinel-2 Satellite Image
    Chaurasia, Kuldeep
    Dixit, Mayank
    Goyal, Ayush
    Uthej, K.
    Adhithyaram, S.
    Soni, Anushka
    Ghandi, Uttam
    SPIE FUTURE SENSING TECHNOLOGIES 2021, 2021, 11914
  • [6] LARGE SCALE FOREST PARAMETER ESTIMATION THROUGH A DEEP LEARNING-BASED FUSION OF SENTINEL-2 AND TANDEM-X DATA
    Carcereri, Daniel
    Rizzoli, Paola
    Ienco, Dino
    Bueso-Bello, Jose-Luis
    Gonzalez, Carolina
    Puliti, Stefano
    Bruzzone, Lorenzo
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5773 - 5776
  • [7] Deep Neural Networks with Transfer Learning for Forest Variable Estimation Using Sentinel-2 Imagery in Boreal Forest
    Astola, Heikki
    Seitsonen, Lauri
    Halme, Eelis
    Molinier, Matthieu
    Lonnqvist, Anne
    REMOTE SENSING, 2021, 13 (12)
  • [8] Burnt Forest Estimation from Sentinel-2 Imagery of Australia using Unsupervised Deep Learning
    Abid, Nosheen
    Malik, Muhammad Imran
    Shahzad, Muhammad
    Shafait, Faisal
    Ali, Haider
    Ghaffar, Muhammad Mohsin
    Weis, Christian
    Wehn, Norbert
    Liwicki, Marcus
    2021 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA 2021), 2021, : 74 - 81
  • [9] Automatic mapping of national surface water with OpenStreetMap and Sentinel-2 MSI data using deep learning
    Li, Hao
    Zech, Johannes
    Ludwig, Christina
    Fendrich, Sascha
    Shapiro, Aurelie
    Schultz, Michael
    Zipf, Alexander
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 104
  • [10] Deep learning-based burned forest areas mapping via Sentinel-2 imagery: a comparative study
    Atasever, Umit Haluk
    Tercan, Emre
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (04) : 5304 - 5318