Hierarchical Engineering of Porous P2-Na2/3Ni1/3Mn2/3O2 Nanofibers Assembled by Nanoparticles Enables Superior Sodium-Ion Storage Cathodes

被引:212
作者
Liu, Yongchang [1 ]
Shen, Qiuyu [1 ]
Zhao, Xudong [1 ]
Zhang, Jian [1 ]
Liu, Xiaobin [1 ]
Wang, Tianshi [1 ]
Zhang, Ning [2 ]
Jiao, Lifang [3 ]
Chen, Jun [4 ]
Fan, Li-Zhen [1 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[2] Hebei Univ, Coll Chem & Environm Sci, Baoding 071002, Peoples R China
[3] Nankai Univ, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
[4] Univ Sci & Technol Beijing, Dept Phys Chem, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金; 中国博士后科学基金;
关键词
DFT computations; nanostructure; P2-Na-2; 3Ni(1); 3Mn(2); 3O(2) cathode; reaction mechanism; sodium-ion batteries; P2-TYPE NA2/3NI1/3MN2/3O2; ELECTROCHEMICAL PROPERTIES; PHASE-TRANSITION; ENERGY-STORAGE; LONG-LIFE; BATTERIES; VOLTAGE; COMPOSITE;
D O I
10.1002/adfm.201907837
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Layered transition metal oxides (TMOs) are appealing cathode candidates for sodium-ion batteries (SIBs) by virtue of their facile 2D Na+ diffusion paths and high theoretical capacities but suffer from poor cycling stability. Herein, taking P2-type Na2/3Ni1/3Mn2/3O2 as an example, it is demonstrated that the hierarchical engineering of porous nanofibers assembled by nanoparticles can effectively boost the reaction kinetics and stabilize the structure. The P2-Na2/3Ni1/3Mn2/3O2 nanofibers exhibit exceptional rate capability (166.7 mA h g(-1) at 0.1 C with 73.4 mA h g(-1) at 20 C) and significantly improved cycle life (approximate to 81% capacity retention after 500 cycles) as cathode materials for SIBs. The highly reversible structure evolution and Ni/Mn valence change during sodium insertion/extraction are verified by in operando X-ray diffraction and ex situ X-ray photoelectron spectroscopy, respectively. The facilitated electrode process kinetics are demonstrated by an additional study using the electrochemical measurements and density functional theory computations. More impressively, the prototype Na-ion full battery built with a Na2/3Ni1/3Mn2/3O2 nanofibers cathode and hard carbon anode delivers a promising energy density of 212.5 Wh kg(-1). The concept of designing a fibrous framework composed of small nanograins offers a new and generally applicable strategy for enhancing the Na-storage performance of layered TMO cathode materials.
引用
收藏
页数:11
相关论文
共 61 条
[1]   Improvement of the Cathode Electrolyte Interphase on P2-Na2/3Ni1/3Mn2/3O2 by Atomic Layer Deposition [J].
Alvarado, Judith ;
Ma, Chuze ;
Wang, Shen ;
Nguyen, Kimberly ;
Kodur, Moses ;
Meng, Ying Shirley .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (31) :26518-26530
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[4]   Polyanionic Insertion Materials for Sodium-Ion Batteries [J].
Barpanda, Prabeer ;
Lander, Laura ;
Nishimura, Shin-ichi ;
Yamada, Atsuo .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[5]   Toward Na-ion Batteries-Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material [J].
Buchholz, Daniel ;
Moretti, Arianna ;
Kloepsch, Richard ;
Nowak, Sascha ;
Siozios, Vassilios ;
Winter, Martin ;
Passerini, Stefano .
CHEMISTRY OF MATERIALS, 2013, 25 (02) :142-148
[6]   Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays [J].
Chao, Dongliang ;
Liang, Pei ;
Chen, Zhen ;
Bai, Linyi ;
Shen, He ;
Liu, Xiaoxu ;
Xia, Xinhui ;
Zhao, Yanli ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Shen, Ze Xiang .
ACS NANO, 2016, 10 (11) :10211-10219
[7]   Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J].
Chen, Chaoji ;
Wen, Yanwei ;
Hu, Xianluo ;
Ji, Xiulei ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Shan, Bin ;
Huang, Yunhui .
NATURE COMMUNICATIONS, 2015, 6
[8]   NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density [J].
Chen, Mingzhe ;
Hua, Weibo ;
Xiao, Jin ;
Cortiel, David ;
Chen, Weihua ;
Wang, Enhui ;
Hu, Zhe ;
Gu, Qinfen ;
Wang, Xiaolin ;
Indris, Sylvio ;
Chou, Shu-Lei ;
Dou, Shi-Xue .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Delocalized Spin States in 2D Atomic Layers Realizing Enhanced Electrocatalytic Oxygen Evolution [J].
Chen, Shichuan ;
Kang, Zhixiong ;
Hu, Xin ;
Zhang, Xiaodong ;
Wang, Hui ;
Xie, Junfeng ;
Zheng, XuSheng ;
Yan, Wensheng ;
Pan, Bicai ;
Xie, Yi .
ADVANCED MATERIALS, 2017, 29 (30)
[10]   Na+-Conductive Na2Ti3O7-Modified P2-type Na2/3Ni1/3Mn2/3O2 via a Smart in Situ Coating Approach: Suppressing Na+/Vacancy Ordering and P2-O2 Phase Transition [J].
Dang, Rongbin ;
Chen, Minmin ;
Li, Qi ;
Wu, Kang ;
Lee, Yu Lin ;
Hu, Zhongbo ;
Xiao, Xiaoling .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (01) :856-864