LAOS: The strain softening/strain hardening paradox

被引:67
作者
Mermet-Guyennet, M. R. B. [1 ]
de Castro, J. Gianfelice [1 ]
Habibi, M. [1 ]
Martzel, N. [2 ]
Denn, M. M. [3 ,4 ]
Bonn, D. [1 ]
机构
[1] Univ Amsterdam, Inst Phys, NL-1098 XH Amsterdam, Netherlands
[2] Mfg Francaise Pneumat MICHELIN, F-63040 Clermont Ferrand, France
[3] CUNY City Coll, Benjamin Levich Inst, New York, NY 10031 USA
[4] CUNY City Coll, Dept Chem Engn, New York, NY 10031 USA
关键词
AMPLITUDE OSCILLATORY SHEAR; COMPLEX FLUIDS; NETWORK MODEL; BEHAVIOR; RHEOLOGY; GLASS;
D O I
10.1122/1.4902000
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Numerous materials, from biopolymers to filled rubbers, exhibit strain softening at high strain amplitudes during a strain sweep in oscillatory rheology: The modulus decreases with increasing deformation. On the other hand, if the nonlinear elastic response is analyzed within a single oscillation cycle (described by a Lissajous curve), these systems are often reported to exhibit strain hardening. We compare strain sweeps and single cycle LAOS (large amplitude oscillatory shear) analyses of stress vs strain on three very different materials. We conclude that the reported strain hardening is due to the use of a tangent modulus in the LAOS analysis, and that the overall rheology remains strain softening. To show that this conclusion is robust, we demonstrate a rescaling of the modulus that collapses the data from all the oscillatory measurements onto a single master curve that clearly exhibits the correct strain softening behavior. (C) 2015 The Society of Rheology.
引用
收藏
页码:21 / 32
页数:12
相关论文
共 26 条
[1]  
[Anonymous], 1962, J. Appl. Polym. Sci, V6, P368, DOI DOI 10.1002/APP.1962.070062115
[2]  
[Anonymous], EUR FOOD RES TECHNOL
[3]   A geometrical interpretation of large amplitude oscillatory shear response [J].
Cho, KS ;
Hyun, K ;
Ahn, KH ;
Lee, SJ .
JOURNAL OF RHEOLOGY, 2005, 49 (03) :747-758
[4]   Macroscopic vs. local rheology of yield stress fluids [J].
Coussot, P. ;
Tocquer, L. ;
Lanos, C. ;
Ovarlez, G. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2009, 158 (1-3) :85-90
[5]   Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress) [J].
Dimitriou, Christopher J. ;
Ewoldt, Randy H. ;
McKinley, Gareth H. .
JOURNAL OF RHEOLOGY, 2013, 57 (01) :27-70
[6]   New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear [J].
Ewoldt, Randy H. ;
Hosoi, A. E. ;
McKinley, Gareth H. .
JOURNAL OF RHEOLOGY, 2008, 52 (06) :1427-1458
[7]   Low-dimensional intrinsic material functions for nonlinear viscoelasticity [J].
Ewoldt, Randy H. ;
Bharadwaj, N. Ashwin .
RHEOLOGICA ACTA, 2013, 52 (03) :201-219
[8]   Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials [J].
Ewoldt, Randy H. ;
Winter, Peter ;
Maxey, Jason ;
McKinley, Gareth H. .
RHEOLOGICA ACTA, 2010, 49 (02) :191-212
[9]   Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles [J].
Gurnon, A. Kate ;
Wagner, Norman J. .
JOURNAL OF RHEOLOGY, 2012, 56 (02) :333-351
[10]   Yielding and structural relaxation in soft materials: Evaluation of strain-rate frequency superposition data by the stress decomposition method [J].
Hess, Andreas ;
Aksel, Nuri .
PHYSICAL REVIEW E, 2011, 84 (05)