Feasibility of Raman spectroscopy as a potential in vivo tool to screen for pre-diabetes and diabetes

被引:10
作者
Guevara, Edgar [1 ]
Carlos Torres-Galvan, Juan [2 ,3 ,4 ]
Javier Gonzalez, Francisco [2 ,3 ]
Luevano-Contreras, Claudia [5 ]
Cayetano Castillo-Martinez, Claudio [6 ]
Ramirez-Elias, Miguel G. [7 ]
机构
[1] Univ Autonoma San Luis Potosi, CONACYT, San Luis Potosi 78210, San Luis Potosi, Mexico
[2] Univ Autonoma San Luis Potosi, Terahertz Sci & Technol Ctr C2T2, San Luis Potosi, San Luis Potosi, Mexico
[3] Univ Autonoma San Luis Potosi, Sci & Technol Natl Lab LANCyTT, San Luis Potosi, San Luis Potosi, Mexico
[4] Univ Autonoma San Luis Potosi, Fac Ingn, San Luis Potosi, San Luis Potosi, Mexico
[5] Univ Guanajuato, Dept Med Sci, Leon, Mexico
[6] Hosp Lomas San Luis, San Luis Potosi, San Luis Potosi, Mexico
[7] Univ Autonoma San Luis Potosi, Fac Ciencias, San Luis Potosi, San Luis Potosi, Mexico
关键词
diabetes; machine learning; principal component analysis; Raman spectroscopy; support vector machine; CLASSIFICATION; HEMOGLOBIN; DIAGNOSIS; SERUM;
D O I
10.1002/jbio.202200055
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this article, we investigated the feasibility of using Raman spectroscopy and multivariate analysis method to noninvasively screen for prediabetes and diabetes in vivo. Raman measurements were performed on the skin from 56 patients with diabetes, 19 prediabetic patients and 32 healthy volunteers. These spectra were collected along with reference values provided by the standard glycated hemoglobin (HbA1c) assay. A multiclass principal component analysis and support vector machine (PCA-SVM) model was created from the labeled Raman spectra and was validated through a two-layer cross-validation scheme. Classification accuracy of the model was 94.3% with an area under the receiver operating characteristic curve AUC of 0.76 (0.65-0.84) for the prediabetic group, 0.86 (0.71-0.93) for the diabetic group and 0.97(0.93-0.99) for the control group. Our results suggest the feasibility of using Raman spectroscopy for the classification of prediabetes and diabetes in vivo.
引用
收藏
页数:9
相关论文
共 38 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   Standards of Medical Care in Diabetes-2009 [J].
不详 .
DIABETES CARE, 2009, 32 :S13-S61
[3]   Introduction: Standards of Medical Care in Diabetes-2021 [J].
不详 .
DIABETES CARE, 2021, 44 :S1-S2
[4]   Using the likelihood ratio to evaluate allowable total error - an example with glycated hemoglobin (HbA1c) [J].
Asberg, Arne ;
Odsaeter, Ingrid Hov ;
Carlsen, Sven Magnus ;
Mikkelsen, Gustav .
CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2015, 53 (09) :1459-1464
[5]   Raman Spectroscopy-Based Sensitive and Specific Detection of Glycated Hemoglobin [J].
Barman, Ishan ;
Dingari, Narahara Chari ;
Kang, Jeon Woong ;
Horowitz, Gary L. ;
Dasari, Ramachandra R. ;
Feld, Michael S. .
ANALYTICAL CHEMISTRY, 2012, 84 (05) :2474-2482
[6]  
Ben-Hur A, 2010, METHODS MOL BIOL, V609, P223, DOI 10.1007/978-1-60327-241-4_13
[7]  
BOTTOU L, 1994, INT C PATT RECOG, P77, DOI 10.1109/ICPR.1994.576879
[8]   Raman spectroscopy of human skin for kidney failure detection [J].
Bratchenko, Lyudmila A. ;
Bratchenko, Ivan A. ;
Khristoforova, Yulia A. ;
Artemyev, Dmitry N. ;
Konovalova, Daria Y. ;
Lebedev, Peter A. ;
Zakharov, Valery P. .
JOURNAL OF BIOPHOTONICS, 2021, 14 (02)
[9]   Support Vector Machines for classification and regression [J].
Brereton, Richard G. ;
Lloyd, Gavin R. .
ANALYST, 2010, 135 (02) :230-267
[10]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297