Explainable Deep Learning for Personalized Age Prediction With Brain Morphology

被引:55
作者
Lombardi, Angela [1 ,2 ]
Diacono, Domenico [2 ]
Amoroso, Nicola [2 ,3 ]
Monaco, Alfonso [2 ]
Tavares, Joao Manuel R. S. [4 ]
Bellotti, Roberto [1 ,2 ]
Tangaro, Sabina [2 ,5 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Fis, Bari, Italy
[2] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy
[3] Univ Bari Aldo Moro, Dipartimento Farm Sci Farmaco, Bari, Italy
[4] Univ Porto, Fac Engn, Dept Engn Mecan, Inst Ciencia & Inovacao Engn Mecan & Engn Ind, Porto, Portugal
[5] Univ Bari Aldo Moro, Dipartimento Sci Suolo Pianta & Alimenti, Bari, Italy
关键词
explainable artificial intelligence; XAI; brain aging; deep neural networks; machine learning; MRI; FreeSurfer; morphological features; AUTISM SPECTRUM DISORDER; SURFACE-BASED ANALYSIS; CORTICAL THICKNESS; LONGITUDINAL CHANGES; ARTIFICIAL-INTELLIGENCE; CEREBRAL-CORTEX; BLACK-BOX; HEALTHY; MACHINE; SEGMENTATION;
D O I
10.3389/fnins.2021.674055
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Predicting brain age has become one of the most attractive challenges in computational neuroscience due to the role of the predicted age as an effective biomarker for different brain diseases and conditions. A great variety of machine learning (ML) approaches and deep learning (DL) techniques have been proposed to predict age from brain magnetic resonance imaging scans. If on one hand, DL models could improve performance and reduce model bias compared to other less complex ML methods, on the other hand, they are typically black boxes as do not provide an in-depth understanding of the underlying mechanisms. Explainable Artificial Intelligence (XAI) methods have been recently introduced to provide interpretable decisions of ML and DL algorithms both at local and global level. In this work, we present an explainable DL framework to predict the age of a healthy cohort of subjects from ABIDE I database by using the morphological features extracted from their MRI scans. We embed the two local XAI methods SHAP and LIME to explain the outcomes of the DL models, determine the contribution of each brain morphological descriptor to the final predicted age of each subject and investigate the reliability of the two methods. Our findings indicate that the SHAP method can provide more reliable explanations for the morphological aging mechanisms and be exploited to identify personalized age-related imaging biomarker.
引用
收藏
页数:17
相关论文
共 76 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example [J].
Abraham, Alexandre ;
Milham, Michael P. ;
Di Martino, Adriana ;
Craddock, R. Cameron ;
Samaras, Dimitris ;
Thirion, Bertrand ;
Varoquaux, Gael .
NEUROIMAGE, 2017, 147 :736-745
[3]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[4]   Deep Learning and Multiplex Networks for Accurate Modeling of Brain Age [J].
Amoroso, Nicola ;
La Rocca, Marianna ;
Bellantuono, Loredana ;
Diacono, Domenico ;
Fanizzi, Annarita ;
Lella, Eufemia ;
Lombardi, Angela ;
Maggipinto, Tommaso ;
Monaco, Alfonso ;
Tangaro, Sabina ;
Bellotti, Roberto .
FRONTIERS IN AGING NEUROSCIENCE, 2019, 11
[5]   Deep learning reveals Alzheimer's disease onset in MCI subjects: Results from an international challenge [J].
Amoroso, Nicola ;
Diacono, Domenico ;
Fanizzi, Annarita ;
La Rocca, Marianna ;
Monaco, Alfonso ;
Lombardi, Angela ;
Guaragnella, Cataldo ;
Bellotti, Roberto ;
Tangaro, Sabina .
JOURNAL OF NEUROSCIENCE METHODS, 2018, 302 :3-9
[6]  
[Anonymous], 2013, Front. Neuroinf
[7]   Age-Dependent Changes in the Cerebrospinal Fluid Proteome by Slow Off-Rate Modified Aptamer Array [J].
Baird, Geoffrey S. ;
Nelson, Sally K. ;
Keeney, Tracy R. ;
Stewart, Alex ;
Williams, Stephen ;
Kraemer, Stephan ;
Peskind, Elaine R. ;
Montine, Thomas J. .
AMERICAN JOURNAL OF PATHOLOGY, 2012, 180 (02) :446-456
[8]   Charting shared developmental trajectories of cortical thickness and structural connectivity in childhood and adolescence [J].
Ball, Gareth ;
Beare, Richard ;
Seal, Marc L. .
HUMAN BRAIN MAPPING, 2019, 40 (16) :4630-4644
[9]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[10]   Predicting brain age with complex networks: From adolescence to adulthood [J].
Bellantuono, Loredana ;
Marzano, Luca ;
La Rocca, Marianna ;
Duncan, Dominique ;
Lombardi, Angela ;
Maggipinto, Tommaso ;
Monaco, Alfonso ;
Tangaro, Sabina ;
Amoroso, Nicola ;
Bellotti, Roberto .
NEUROIMAGE, 2021, 225