Linearized stability in periodic functional differential equations with state-dependent delays

被引:60
作者
Hartung, F [1 ]
机构
[1] Univ Veszprem, Dept Math & Comp, H-8201 Veszprem, Hungary
基金
匈牙利科学研究基金会;
关键词
linearization; state-dependent delay; stability; periodic solution;
D O I
10.1016/j.cam.2004.04.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study stability of periodic solutions of a class of nonlinear functional differential equations (FDEs) with stare-dependent delays using the method of linearization. We show that a periodic solution of the nonlinear FDE is exponentially stable, if the zero solution of an associated linear periodic linear homogeneous FDE is exponentially stable. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:201 / 211
页数:11
相关论文
共 21 条
[11]  
HARTUNG F, 1997, FUNCT DIFFER EQU, V4, P65
[12]   Molecular simulations of adsorption and siting of light alkanes in silicalite-1 [J].
Krishna, R ;
Paschek, D .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2001, 3 (03) :453-462
[13]   Numerical bifurcation analysis of differential equations with state-dependent delay [J].
Luzyanina, T ;
Engelborghs, K ;
Roose, D .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (03) :737-753
[14]   Existence of periodic solutions for a state dependent delay differential equation [J].
Magal, P ;
Arino, O .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 165 (01) :61-95
[15]   Hematopoietic model with moving boundary condition and state dependent delay:: Applications in erythropoiesis [J].
Mahaffy, JM ;
Bélair, J ;
Mackey, MC .
JOURNAL OF THEORETICAL BIOLOGY, 1998, 190 (02) :135-146
[16]  
Mallet-Paret J., 1994, Topological Meth. Nonlinear Anal., V3, P101, DOI 10.12775/TMNA.1994.006
[17]  
Smith H. L., 1992, Oscillation and Dynamics in Delay Equations. Contemporary Mathematics, V120, P153
[19]  
[No title captured]
[20]  
[No title captured]