Uniform approximation of Abhyankar valuation ideals in smooth function fields

被引:82
作者
Ein, L
Lazarsfeld, R
Smith, KE
机构
[1] Univ Illinois, Dept Math, Chicago, IL 60607 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
D O I
10.1353/ajm.2003.0010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix a rank one valuation nu centered at a smooth point x on, an algebraic variety over a field of characteristic zero. Assume that nu is Abhyankar, that is, that its rational rank plus its transcendence degree equal the dimension of the variety. Let am denote the ideal of elements in the local ring of x whose valuations are at least m. Our main theorem is that there exists k > 0 such that a(mn) is contained in (a(m-k))(n) for all m and n. This can be viewed as a greatly strengthened form of Izumi's Theorem for Abhyankar valuations centered on smooth complex varieties. The proof uses the theory of asymptotic multiplier ideals.
引用
收藏
页码:409 / 440
页数:32
相关论文
共 25 条
[1]   ON THE VALUATIONS CENTERED IN A LOCAL DOMAIN [J].
ABHYANKAR, S .
AMERICAN JOURNAL OF MATHEMATICS, 1956, 78 (02) :321-348
[2]   ON A PROBLEM OF ZARISKI ON DIMENSIONS OF LINEAR-SYSTEMS [J].
CUTKOSKY, SD ;
SRINIVAS, V .
ANNALS OF MATHEMATICS, 1993, 137 (03) :531-559
[3]  
Cutkosky SD, 2000, J REINE ANGEW MATH, V522, P93
[4]  
Demailly JP, 2000, MICH MATH J, V48, P137
[5]  
DEMAILLY JP, 2001, ICTP LECT NOTES, V6
[6]  
DEMAILLY JP, 1998, SEM BOURB
[7]   Uniform bounds and symbolic powers on smooth varieties [J].
Ein, L ;
Lazarsfeld, R ;
Smith, KE .
INVENTIONES MATHEMATICAE, 2001, 144 (02) :241-252
[8]  
EIN L, 1997, P S PURE MATH, V0062, P00203
[9]  
HARTSHORNE R, 1993, GRAD TEXTS MATH, V52
[10]   Multiplier ideals of monomial ideals [J].
Howald, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (07) :2665-2671