Approximate Bayes Estimators of the Parameters of the Inverse Gaussian Distribution Under Different Loss Functions

被引:3
|
作者
Usta, Ilhan [1 ]
Akdede, Merve [2 ]
机构
[1] Eskisehir Tech Univ, Dept Stat, Eskisehir, Turkey
[2] Usak Univ, Dept Stat, Usak, Turkey
来源
关键词
Inverse Gaussian distribution; Bayes estimator; extension of Jeffrey's prior; Lindley approximation; Tierney Kadane approximation; RELIABILITY; PREDICTION;
D O I
10.13052/jrss0974-8024.1315
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Inverse Gaussian is a popular distribution especially in the reliability and life time modelling, and thus the estimation of its unknown parameters has received considerable interest. This paper aims to obtain the Bayes estimators for the two parameters of the inverse Gaussian distribution under varied loss functions (squared error, general entropy and linear exponential). In Bayesian procedure, we consider commonly used non-informative priors such as the vague and Jeffrey's priors, and also propose using the extension of Jeffrey's prior. In the case where the two parameters are unknown, the Bayes estimators cannot be obtained in the closed-form. Hence, we employ two approximation methods, namely Lindley and Tierney Kadane (TK) approximations, to attain the Bayes estimates of the parameters. In this paper. the effects of considered loss functions, priors and approximation methods on Bayesian parameter estimation are also presented. The performance of Bayes estimates is compared with the corresponding classical estimates in terms of the bias and the relative efficiency throughout an extensive simulation study. The results of the comparison show that Bayes estimators obtained by TK method under linear exponential loss function using the proposed prior outperform the other estimators for estimating the parameters of inverse Gaussian distribution most of the time. Finally, a real data set is provided to illustrate the results.
引用
收藏
页码:87 / 111
页数:25
相关论文
共 50 条