Multiscale reconstruction for computational spectral imaging

被引:15
作者
Willett, R. M. [1 ,3 ]
Gehm, M. E. [2 ]
Brady, D. J.
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[2] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
[3] Duke Univ, Fitzpatrick Inst Photon, Durham, NC 27708 USA
来源
COMPUTATIONAL IMAGING V | 2007年 / 6498卷
关键词
wavelets; compressed sensing; hyperspectral imaging;
D O I
10.1117/12.715711
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we develop a spectral imaging system and associated reconstruction methods that have been designed to exploit the theory of compressive sensing. Recent work in this emerging field indicates that when the signal of interest is very sparse (i.e. zero-valued at most locations) or highly compressible in some basis, relatively few incoherent observations are necessary to reconstruct the most significant non-zero signal components. Conventionally, spectral imaging systems measure complete data cubes and are subject to performance limiting tradeoffs between spectral and spatial resolution. We achieve single-shot full 3D data cube estimates by using compressed sensing reconstruction methods to process observations collected using an innovative, real-time, dual-disperser spectral imager. The physical system contains a transmissive coding element located between a pair of matched dispersers, so that each pixel measurement is the coded projection of the spectrum in the corresponding spatial location in the spectral data cube. Using a novel multiscale representation of the spectral image data cube, we are able to accurately reconstruct 256 x 256 x 15 spectral image cubes using just 256 x 256 measurements.
引用
收藏
页数:15
相关论文
共 34 条