Analysis of Recent Re-Identification Architectures for Tracking-by-Detection Paradigm in Multi-Object Tracking

被引:0
作者
Ishikawa, Haruya [1 ]
Hayashi, Masaki [1 ]
Phan, Trong [2 ]
Yamamoto, Kazuma [2 ]
Masuda, Makoto [2 ]
Aoki, Yoshimitsu [1 ]
机构
[1] Keio Univ, Dept Elect Engn, Yokohama, Kanagawa, Japan
[2] OKI Elect Ind Co Ltd, Saitama, Japan
来源
VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP | 2021年
关键词
Multi-Object Tracking; Person Re-Identification; Video Re-Identification; Metric Learning;
D O I
10.5220/0010341502340244
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Person re-identification is a vital module of the tracking-by-detection framework for online multi-object tracking. Despite recent advances in multi-object tracking and person re-identification, inadequate attention was given to integrating these technologies to provide a robust multi-object tracker. In this work, we combine modern state-of-the-art re-identification models and modeling techniques on the basic tracking-by-detection framework and benchmark them on heavily occluded scenes to understand their effect. We hypothesize that temporal modeling for re-identification is crucial for training robust re-identification models for they are conditioned on sequences containing occlusions. Along with traditional image-based re-identification methods, we analyze temporal modeling methods used in video-based re-identification tasks. We also train re-identification models with different embedding methods, including triplet loss, and analyze their effect. We benchmark the re-identification models on the challenging MOT20 dataset containing crowded scenes with various occlusions. We provide a thorough assessment and investigation of the usage of modern re-identification modeling methods and prove that these methods are, in fact, effective for multi-object tracking. Compared to baseline methods, results show that these models can provide robust re-identification proved by improvements in the number of identity switching, MOTA, IDF1, and other metrics.
引用
收藏
页码:234 / 244
页数:11
相关论文
共 50 条
  • [41] BPMTrack: Multi-Object Tracking With Detection Box Application Pattern Mining
    Gao, Yan
    Xu, Haojun
    Li, Jie
    Gao, Xinbo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1508 - 1521
  • [42] Fusion detection and ReID embedding with hybrid attention for multi-object tracking
    Chan, Sixian
    Qiu, Chenhao
    Wu, Dijuan
    Hu, Jie
    Heidari, Ali Asghar
    Chen, Huiling
    NEUROCOMPUTING, 2024, 575
  • [43] Multi-Object Tracking with Micro Aerial Vehicle
    Yufeng Ji
    Weixing Li
    Xiaolin Li
    Shikun Zhang
    Feng Pan
    Journal of Beijing Institute of Technology, 2019, 28 (03) : 389 - 398
  • [44] Multi-Object Tracking Based on Formation Stability
    Xu, Liang
    Li, Weihai
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [45] Multi-object tracking using dominant sets
    Tesfaye, Yonatan T.
    Zemene, Eyasu
    Pelillo, Marcello
    Prati, Andrea
    IET COMPUTER VISION, 2016, 10 (04) : 289 - 298
  • [46] End to End Multi-object Tracking Algorithm Applied to Vehicle Tracking
    Qin, Wenyuan
    Du, Hong
    Zhang, Xiaozheng
    Ren, Xuebing
    2022 ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING (CACML 2022), 2022, : 367 - 372
  • [47] Joint Detection and Association for End-to-End Multi-object Tracking
    Li, Ye
    Luo, Xiaoyu
    Shi, Junyu
    Wang, Xinzhong
    Yin, Guangqiang
    Wang, Zhiguo
    NEURAL PROCESSING LETTERS, 2023, 55 (09) : 11823 - 11844
  • [48] Improving The Tracking Persistence of Multi-object Tracking using Scene Classification
    Shin, Dong-Yeon
    Lee, Seong-Won
    IEIE Transactions on Smart Processing and Computing, 2024, 13 (04) : 337 - 343
  • [49] Appearance Guidance Attention for Multi-Object Tracking
    Chen, Yong
    Huang, Junjie
    Liu, Huanlin
    Huang, Meiyong
    Zou, Zhibo
    IEEE ACCESS, 2021, 9 : 103184 - 103193
  • [50] Multi-object tracking: a systematic literature review
    Saif Hassan
    Ghulam Mujtaba
    Asif Rajput
    Noureen Fatima
    Multimedia Tools and Applications, 2024, 83 : 43439 - 43492