Global permafrost simulation and prediction from 2010 to 2100 under different climate scenarios

被引:9
作者
Zhao, Shangmin [1 ]
Cheng, Weiming [2 ,3 ]
Yuan, Yecheng [2 ]
Fan, Zemeng [2 ]
Zhang, Jin [1 ]
Zhou, Chenghu [2 ,3 ]
机构
[1] Taiyuan Univ Technol, Coll Min Engn, Dept Surveying & Mapping, Taiyuan 030024, Peoples R China
[2] Chinese Acad Sci, Inst Geog & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Global permafrost distribution; Permafrost degradation; Logistic regression model; Permafrost distribution simulation and; prediction; Topographic factors; Climate scenarios; MOUNTAIN PERMAFROST; LAND-COVER; ALPINE PERMAFROST; PLATEAU; SURFACE; CARBON; MODEL; AREA;
D O I
10.1016/j.envsoft.2022.105307
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper aims to simulate and predict global permafrost distribution, and analyse its change from 2010 to 2100 under different climate scenarios. Based on different factors (topography, land cover, climate and location) and global permafrost distribution status, logistic regression model (LRM) is chosen and constructed to simulate and predict the global permafrost distributions. Thus, the global permafrost distributions at T1 (2010-2040), T2 (2040-2070) and T3 (2070-2100) are predicted under different climate scenarios (RCP26, RCP45 and RCP85). From T1 to T3, the area of global permafrost has the largest degradation under RCP85 scenarios. From RCP26 to RCP85 at T3, the area of the degraded permafrost reached 0.671 x 10(8) km(2). The degraded permafrost mainly distributes in east Asia, west Asia, north Europe and north America. The west Asia has the highest degrading distance, about 600 km under the situations of both RCP85 from T1 to T3 and from RCP26 to RCP85 at T3.
引用
收藏
页数:8
相关论文
共 49 条
  • [11] [范泽孟 Fan Zemeng], 2005, [地理学报, Acta Geographica Sinica], V60, P941
  • [12] Scenarios of land cover in Eurasia under climate change
    Fan, Zemeng
    Bai, Ruyu
    Yue, Tianxiang
    [J]. JOURNAL OF GEOGRAPHICAL SCIENCES, 2020, 30 (01) : 3 - 17
  • [13] Scenarios of land cover in Karst area of Southwestern China
    Fan, Zemeng
    Li, Jing
    Yue, Tianxiang
    Zhou, Xun
    Lan, Anjun
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2015, 74 (08) : 6407 - 6420
  • [14] Climate Sensitivity of High Arctic Permafrost Terrain Demonstrated by Widespread Ice-Wedge Thermokarst on Banks Island
    Fraser, Robert H.
    Kokelj, Steven V.
    Lantz, Trevor C.
    McFarlane-Winchester, Morgan
    Olthof, Ian
    Lacelle, Denis
    [J]. REMOTE SENSING, 2018, 10 (06)
  • [15] Hoelzle M., 1992, Permafrost Periglac, V3, P143, DOI DOI 10.1002/PPP.3430030212
  • [16] Imhof M, 1996, PERMAFROST PERIGLAC, V7, P267, DOI 10.1002/(SICI)1099-1530(199609)7:3<267::AID-PPP221>3.0.CO
  • [17] 2-L
  • [18] Ishikawa M, 2000, PERMAFROST PERIGLAC, V11, P109, DOI 10.1002/1099-1530(200004/06)11:2<109::AID-PPP343>3.0.CO
  • [19] 2-O
  • [20] The occurrence of alpine permafrost in the Front Range of Colorado
    Janke, JR
    [J]. GEOMORPHOLOGY, 2005, 67 (3-4) : 375 - 389