Global permafrost simulation and prediction from 2010 to 2100 under different climate scenarios

被引:9
作者
Zhao, Shangmin [1 ]
Cheng, Weiming [2 ,3 ]
Yuan, Yecheng [2 ]
Fan, Zemeng [2 ]
Zhang, Jin [1 ]
Zhou, Chenghu [2 ,3 ]
机构
[1] Taiyuan Univ Technol, Coll Min Engn, Dept Surveying & Mapping, Taiyuan 030024, Peoples R China
[2] Chinese Acad Sci, Inst Geog & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Global permafrost distribution; Permafrost degradation; Logistic regression model; Permafrost distribution simulation and; prediction; Topographic factors; Climate scenarios; MOUNTAIN PERMAFROST; LAND-COVER; ALPINE PERMAFROST; PLATEAU; SURFACE; CARBON; MODEL; AREA;
D O I
10.1016/j.envsoft.2022.105307
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper aims to simulate and predict global permafrost distribution, and analyse its change from 2010 to 2100 under different climate scenarios. Based on different factors (topography, land cover, climate and location) and global permafrost distribution status, logistic regression model (LRM) is chosen and constructed to simulate and predict the global permafrost distributions. Thus, the global permafrost distributions at T1 (2010-2040), T2 (2040-2070) and T3 (2070-2100) are predicted under different climate scenarios (RCP26, RCP45 and RCP85). From T1 to T3, the area of global permafrost has the largest degradation under RCP85 scenarios. From RCP26 to RCP85 at T3, the area of the degraded permafrost reached 0.671 x 10(8) km(2). The degraded permafrost mainly distributes in east Asia, west Asia, north Europe and north America. The west Asia has the highest degrading distance, about 600 km under the situations of both RCP85 from T1 to T3 and from RCP26 to RCP85 at T3.
引用
收藏
页数:8
相关论文
共 49 条
  • [1] GLC2000:: a new approach to global land cover mapping from Earth observation data
    Bartholomé, E
    Belward, AS
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (09) : 1959 - 1977
  • [2] Modelling climate change effects on the spatial distribution of mountain permafrost at three sites in northwest Canada
    Bonnaventure, Philip P.
    Lewkowicz, Antoni G.
    [J]. CLIMATIC CHANGE, 2011, 105 (1-2) : 293 - 312
  • [3] Brown J., 2019, **DATA OBJECT**
  • [4] Impacts of active retrogressive thaw slumps on vegetation, soil, and net ecosystem exchange of carbon dioxide in the Canadian High Arctic
    Cassidy, Alison E.
    Christen, Andreas
    Henry, Greg H. R.
    [J]. ARCTIC SCIENCE, 2017, 3 (02) : 179 - 202
  • [5] Cheng G., 1984, ACTA GEOGRAPHICA SIN, V39, P185, DOI DOI 10.11821/XB198402006
  • [6] Simulation of the Decadal Permafrost Distribution on the Qinghai-Tibet Plateau (China) over the Past 50 Years
    Cheng Weiming
    Zhao Shangmin
    Zhou Chenghu
    Chen Xi
    [J]. PERMAFROST AND PERIGLACIAL PROCESSES, 2012, 23 (04) : 292 - 300
  • [7] Managing complexity in simulations of land surface and near-surface processes
    Coon, Ethan T.
    Moulton, J. David
    Painter, Scott L.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 78 : 134 - 149
  • [8] Cooper MDA, 2017, NAT CLIM CHANGE, V7, P507, DOI [10.1038/nclimate3328, 10.1038/NCLIMATE3328]
  • [9] Mountain permafrost distribution modelling using a multi-criteria approach in the Hovsgol area, northern Mongolia
    Etzelmuller, Bernd
    Heggem, Eva S. Flo
    Sharkhuu, N.
    Frauenfelder, Regula
    Kaab, Andreas
    Goulden, Clyde
    [J]. PERMAFROST AND PERIGLACIAL PROCESSES, 2006, 17 (02) : 91 - 104
  • [10] Land-cover changes of biome transition zones in Loess Plateau of China
    Fan, Ze-Meng
    Li, Jing
    Yue, Tian-Xiang
    [J]. ECOLOGICAL MODELLING, 2013, 252 : 129 - 140