Compactness of Floquet isospectral sets for the matrix Hill's equation

被引:13
作者
Carlson, R [1 ]
机构
[1] Univ Colorado, Dept Math, Colorado Springs, CO 80933 USA
关键词
Hill's equation; inverse spectral theory; KdV;
D O I
10.1090/S0002-9939-00-05634-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M(Q) denote the set of self adjoint K x K potentials for the matrix Hill's equation having the same Floquet multipliers as -D-2 + Q. Elementary methods are used to show that M(Q) has compact closure in the space of continuous matrix valued functions.
引用
收藏
页码:2933 / 2941
页数:9
相关论文
共 13 条
[1]  
Ahlfors L.V., 1966, Complex analysis
[2]   THE BORG THEOREM FOR THE VECTORIAL HILL EQUATION [J].
DESPRES, B .
INVERSE PROBLEMS, 1995, 11 (01) :97-121
[3]   AN EXPLICIT SOLUTION OF THE INVERSE PERIODIC PROBLEM FOR HILLS EQUATION [J].
FINKEL, A ;
ISAACSON, E ;
TRUBOWITZ, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (01) :46-53
[4]   EIGENVALUE AND EIGENFUNCTION ASYMPTOTICS FOR REGULAR STURM-LIOUVILLE PROBLEMS [J].
FULTON, CT ;
PRUESS, SA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 188 (01) :297-340
[5]   GAPS AND BANDS OF ONE DIMENSIONAL PERIODIC SCHRODINGER-OPERATORS [J].
GARNETT, J ;
TRUBOWITZ, E .
COMMENTARII MATHEMATICI HELVETICI, 1984, 59 (02) :258-312
[6]  
IWASAKI K, 1987, ANN MAT PUR APPL, P185
[7]   FIBRATION OF THE PHASE-SPACE FOR THE KORTEWEG-DEVRIES EQUATION [J].
KAPPELER, T .
ANNALES DE L INSTITUT FOURIER, 1991, 41 (03) :539-575
[8]   PERIODIC-SOLUTIONS OF KDV EQUATION [J].
LAX, PD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (01) :141-188
[9]  
Magnus W., 1979, HILLS EQUATION
[10]   HILLS OPERATOR AND HYPERELLIPTIC FUNCTION THEORY IN PRESENCE OF INFINITELY MANY BRANCH POINTS [J].
MCKEAN, HP ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1976, 29 (02) :143-226