Stably determining time-dependent convection-diffusion coefficients from a partial Dirichlet-to-Neumann map

被引:4
|
作者
Bellassoued, Mourad [1 ]
Ben Fraj, Oumaima [1 ]
机构
[1] Univ Tunis El Manar, Ecole Natl Ingn enieurs Tunis, ENIT LAMSIN, BP 37, Tunis 1002, Tunisia
关键词
inverse problems; parabolic equation; Dirichlet-to-Neumann map; arbitrary boundary data;
D O I
10.1088/1361-6420/abe10d
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study in this paper the inverse problem for the dynamical convection-diffusion equation. More precisely, we set logarithmic stability estimates in the determination of the two time-dependent first-order convection term and the scalar potential appearing in the heat equation. The observations here are taken only on an arbitrary open subset of the boundary and are given by a partial Dirichlet-to-Neumann map. For this end, we will reduce our initial problem into an auxiliary one then we will construct particular solutions and apply a special parabolic Carleman estimate.
引用
收藏
页数:35
相关论文
共 11 条