Morphism Categories of Gorenstein-projective Modules

被引:0
作者
Liu, Miantao [1 ]
Li, Ruixin [1 ]
Gao, Nan [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
morphism categories; Gorenstein-projective modules; relative Auslander algebras; recollements; Morita rings; COHEN-MACAULAY MODULES; BIRKHOFF TYPE PROBLEM; SUBMODULE CATEGORIES; HYPERSURFACE SINGULARITIES; MONOMORPHISM CATEGORIES; REPRESENTATION TYPE; MORITA CONTEXTS; CM-FREE; FINITE; ALGEBRAS;
D O I
10.1142/S1005386718000275
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Lambda be an algebra of finite Cohen-Macaulay type and Gamma its Cohen-Macaulay Auslander algebra. We are going to characterize the morphism category Mor(Lambda-Gproj) of Gorenstein-projective Lambda-modules in terms of the module category Gamma-mod by a categorical equivalence. Based on this, we obtain that some factor category of the epimorphism category Epi(Lambda-Gproj) is a Frobenius category, and also, we clarify the relations among Mor(Lambda-Gproj), Mor(T-2(Lambda)-Gproj) and Mor(Lambda-Gproj), where T-2(Lambda) and Lambda are respectively the lower triangular matrix algebra and the Morita ring closely related to Lambda.
引用
收藏
页码:377 / 386
页数:10
相关论文
共 41 条
[1]  
[Anonymous], 1988, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. London Mathematical Society Lecture Notes Series
[2]   APPLICATIONS OF CONTRAVARIANTLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1991, 86 (01) :111-152
[3]  
AUSLANDER M, 1976, J LOND MATH SOC, V12, P371
[4]  
Auslander M., 1966, Proc. Conf. Categorical Algebra, P189
[5]  
Auslander M., 1995, CAMBRIDGE STUDIES AD, V36
[6]  
Bass H., 1962, THE MORITA THEOREMS
[7]  
BEILINSON AA, 1982, ASTERISQUE, P7
[8]   On algebras of finite Cohen-Macaulay type [J].
Beligiannis, Apostolos .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1973-2019
[9]  
Birkhoff G, 1935, P LOND MATH SOC, V38, P385
[10]   COHEN-MACAULAY MODULES ON HYPERSURFACE SINGULARITIES .2. [J].
BUCHWEITZ, RO ;
GREUEL, GM ;
SCHREYER, FO .
INVENTIONES MATHEMATICAE, 1987, 88 (01) :165-182