Bayesian variable selection and coefficient estimation in heteroscedastic linear regression model

被引:4
|
作者
Alshaybawee, Taha [1 ,2 ,4 ]
Alhamzawi, Rahim [4 ]
Midi, Habshah [1 ,2 ]
Allyas, Intisar Ibrahim [3 ]
机构
[1] Univ Putra, Fac Sci, Selangor, Malaysia
[2] Univ Putra, Inst Math Res, Selangor, Malaysia
[3] Nawroz Univ, Coll Adm & Econ, Dahuk, Iraq
[4] Univ Al Qadisiyah, Coll Adm & Econ, Dept Stat, Diwaniyah, Iraq
关键词
Bayesian regression; heteroscedasticity; median regression; prior distribution; variable selection; QUANTILE REGRESSION; LASSO; REGULARIZATION; MIXTURES; PRIORS;
D O I
10.1080/02664763.2018.1432576
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In many real applications, such as econometrics, biological sciences, radio- immunoassay, finance, and medicine, the usual assumption of constant error variance may be unrealistic. Ignoring heteroscedasticity ( non- constant error variance), if it is present in the data, may lead to incorrect inferences and inefficient estimation. In this paper, a simple and effcient Gibbs sampling algorithm is proposed, based on a heteroscedastic linear regression model with an l1 penalty. Then, a Bayesian stochastic search variable selection method is proposed for subset selection. Simulations and real data examples are used to compare the performance of the proposed methods with other existing methods. The results indicate that the proposal performs well in the simulations and real data examples. R code is available upon request.
引用
收藏
页码:2643 / 2657
页数:15
相关论文
共 50 条
  • [41] A novel Bayesian approach for variable selection in linear regression models
    Posch, Konstantin
    Arbeiter, Maximilian
    Pilz, Juergen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144
  • [42] Bayesian variable selection and estimation in maximum entropy quantile regression
    Tu, Shiyi
    Wang, Min
    Sun, Xiaoqian
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (02) : 253 - 269
  • [43] Estimation and variable selection for partial functional linear regression
    Qingguo Tang
    Peng Jin
    AStA Advances in Statistical Analysis, 2019, 103 : 475 - 501
  • [44] Estimation and variable selection for partial functional linear regression
    Tang, Qingguo
    Jin, Peng
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (04) : 475 - 501
  • [45] Model uncertainty and variable selection in Bayesian lasso regression
    Chris Hans
    Statistics and Computing, 2010, 20 : 221 - 229
  • [46] Application of Bayesian variable selection in logistic regression model
    Bangchang, Kannat Na
    AIMS MATHEMATICS, 2024, 9 (05): : 13336 - 13345
  • [47] Model uncertainty and variable selection in Bayesian lasso regression
    Hans, Chris
    STATISTICS AND COMPUTING, 2010, 20 (02) : 221 - 229
  • [48] Bayesian scale mixtures of normals linear regression and Bayesian quantile regression with big data and variable selection
    Chu, Yuanqi
    Yin, Zhouping
    Yu, Keming
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 428
  • [49] Sparse envelope model: efficient estimation and response variable selection in multivariate linear regression
    Su, Z.
    Zhu, G.
    Chen, X.
    Yang, Y.
    BIOMETRIKA, 2016, 103 (03) : 579 - 593
  • [50] DETERMINANTAL POINT PROCESS PRIORS FOR BAYESIAN VARIABLE SELECTION IN LINEAR REGRESSION
    Kojima, Mutsuki
    Komaki, Fumiyasu
    STATISTICA SINICA, 2016, 26 (01) : 97 - 117