Bayesian variable selection and coefficient estimation in heteroscedastic linear regression model

被引:4
|
作者
Alshaybawee, Taha [1 ,2 ,4 ]
Alhamzawi, Rahim [4 ]
Midi, Habshah [1 ,2 ]
Allyas, Intisar Ibrahim [3 ]
机构
[1] Univ Putra, Fac Sci, Selangor, Malaysia
[2] Univ Putra, Inst Math Res, Selangor, Malaysia
[3] Nawroz Univ, Coll Adm & Econ, Dahuk, Iraq
[4] Univ Al Qadisiyah, Coll Adm & Econ, Dept Stat, Diwaniyah, Iraq
关键词
Bayesian regression; heteroscedasticity; median regression; prior distribution; variable selection; QUANTILE REGRESSION; LASSO; REGULARIZATION; MIXTURES; PRIORS;
D O I
10.1080/02664763.2018.1432576
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In many real applications, such as econometrics, biological sciences, radio- immunoassay, finance, and medicine, the usual assumption of constant error variance may be unrealistic. Ignoring heteroscedasticity ( non- constant error variance), if it is present in the data, may lead to incorrect inferences and inefficient estimation. In this paper, a simple and effcient Gibbs sampling algorithm is proposed, based on a heteroscedastic linear regression model with an l1 penalty. Then, a Bayesian stochastic search variable selection method is proposed for subset selection. Simulations and real data examples are used to compare the performance of the proposed methods with other existing methods. The results indicate that the proposal performs well in the simulations and real data examples. R code is available upon request.
引用
收藏
页码:2643 / 2657
页数:15
相关论文
共 50 条
  • [1] Robust estimation and variable selection in heteroscedastic linear regression
    Gijbels, I.
    Vrinssen, I.
    STATISTICS, 2019, 53 (03) : 489 - 532
  • [2] Robust estimation and variable selection for semiparametric partially linear varying coefficient model based on modal regression
    Zhang, Riquan
    Zhao, Weihua
    Liu, Jicai
    JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (02) : 523 - 544
  • [3] Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model
    Lai, Peng
    Wang, Qihua
    Zhou, Xiao-Hua
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 70 : 241 - 256
  • [4] Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution
    Guney, Yesim
    Tuac, Yetkin
    Ozdemir, Senay
    Arslan, Olcay
    COMPUTATIONAL STATISTICS, 2021, 36 (02) : 805 - 827
  • [5] Objective Bayesian variable selection in linear regression model
    Kang, Sang Gil
    Kim, Dal Ho
    Lee, Woo Dong
    Kim, Yongku
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (06) : 1133 - 1157
  • [6] VARIABLE SELECTION FOR PARTIALLY LINEAR VARYING COEFFICIENT QUANTILE REGRESSION MODEL
    Du, Jiang
    Zhang, Zhongzhan
    Sun, Zhimeng
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2013, 6 (03)
  • [7] Quantile regression for robust estimation and variable selection in partially linear varying-coefficient models
    Yang, Jing
    Lu, Fang
    Yang, Hu
    STATISTICS, 2017, 51 (06) : 1179 - 1199
  • [8] A novel Bayesian approach for variable selection in linear regression models
    Posch, Konstantin
    Arbeiter, Maximilian
    Pilz, Juergen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144
  • [9] Efficient parameter estimation and variable selection in partial linear varying coefficient quantile regression model with longitudinal data
    Wang, Kangning
    Sun, Xiaofei
    STATISTICAL PAPERS, 2020, 61 (03) : 967 - 995
  • [10] Efficient parameter estimation and variable selection in partial linear varying coefficient quantile regression model with longitudinal data
    Kangning Wang
    Xiaofei Sun
    Statistical Papers, 2020, 61 : 967 - 995