Connecting complexity with spectral entropy using the Laplace transformed solution to the fractional diffusion equation

被引:13
作者
Liang, Yingjie [1 ,2 ]
Chen, Wen [1 ]
Magin, Richard L. [2 ]
机构
[1] Hohai Univ, Coll Mech & Mat, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing, Jiangsu, Peoples R China
[2] Univ Illinois, Dept Bioengn, Chicago, IL USA
关键词
Fractional derivative; Spectral entropy; Diffusion equation; Laplace transform; Fourier transform; Long range correlation; ANOMALOUS DIFFUSION;
D O I
10.1016/j.physa.2016.02.056
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Analytical solutions to the fractional diffusion equation are often obtained by using Laplace and Fourier transforms, which conveniently encode the order of the time and the space derivatives (alpha and beta) as non-integer powers of the conjugate transform variables (s, and k) for the spectral and the spatial frequencies, respectively. This study presents a new solution to the fractional diffusion equation obtained using the Laplace transform and expressed as a Fox's H-function. This result clearly illustrates the kinetics of the underlying stochastic process in terms of the Laplace spectral frequency and entropy. The spectral entropy is numerically calculated by using the direct integration method and the adaptive Gauss-Kronrod quadrature algorithm. Here, the properties of spectral entropy are investigated for the cases of sub-diffusion and super-diffusion. We find that the overall spectral entropy decreases with the increasing alpha and beta, and that the normal or Gaussian case with alpha = 1 and beta = 2, has the lowest spectral entropy (i.e., less information is needed to describe the state of a Gaussian process). In addition, as the neighborhood over which the entropy is calculated increases, the spectral entropy decreases, which implies a spatial averaging or coarse graining of the material properties. Consequently, the spectral entropy is shown to provide a new way to characterize the temporal correlation of anomalous diffusion. Future studies should be designed to examine changes of spectral entropy in physical, chemical and biological systems undergoing phase changes, chemical reactions and tissue regeneration. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 34 条
[11]   On Random Walks and Entropy in Diffusion-Weighted Magnetic Resonance Imaging Studies of Neural Tissue [J].
Ingo, Carson ;
Magin, Richard L. ;
Colon-Perez, Luis ;
Triplett, William ;
Mareci, Thomas H. .
MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (02) :617-627
[12]  
Li M., 2012, MATH PROBL ENG, V2012, P1, DOI DOI 10.1016/J.M0LCEL.2012.01.020.PMID:22387025
[13]   A relative entropy method to measure non-exponential random data [J].
Liang, Yingjie ;
Chen, Wen .
PHYSICS LETTERS A, 2015, 379 (03) :95-99
[14]   A survey on computing Levy stable distributions and a new MATLAB toolbox [J].
Liang, Yingjie ;
Chen, Wen .
SIGNAL PROCESSING, 2013, 93 (01) :242-251
[15]  
Magin R., 2012, IFAC S SYSTEM IDENTI, V16, DOI [DOI 10.3182/20120711-3-BE-2027.00063, /10.3182/20120711-3-BE-2027.00063, 10.3182/20120711-3- BE-2027.00063]
[16]   Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy [J].
Magin, Richard L. ;
Ingo, Carson ;
Colon-Perez, Luis ;
Triplett, William ;
Mareci, Thomas H. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 178 :39-43
[17]   The fundamental solutions for the fractional diffusion-wave equation [J].
Mainardi, F .
APPLIED MATHEMATICS LETTERS, 1996, 9 (06) :23-28
[18]  
Mainardi F., 2001, Fract. Calc. Appl. Anal, V4, P153, DOI DOI 10.1007/BF02935797
[19]   Stochastic solution of space-time fractional diffusion equations [J].
Meerschaert, MM ;
Benson, DA ;
Scheffler, HP ;
Baeumer, B .
PHYSICAL REVIEW E, 2002, 65 (04) :4
[20]   Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation [J].
Metzler, R ;
Nonnenmacher, TF .
CHEMICAL PHYSICS, 2002, 284 (1-2) :67-90