Similar metabolic perturbations during all-out and constant force exhaustive exercise in humans: a 31P magnetic resonance spectroscopy study

被引:58
作者
Burnley, Mark [1 ]
Vanhatalo, Anni [2 ]
Fulford, Jonathan [3 ]
Jones, Andrew M. [2 ]
机构
[1] Aberystwyth Univ, Dept Sport & Exercise Sci, Aberystwyth SY23 3FD, Ceredigion, Wales
[2] Univ Exeter, Sch Sport & Hlth Sci, Exeter EX1 2LU, Devon, England
[3] Univ Exeter, Peninsula NIHR Clin Res Facil, Exeter EX1 2LU, Devon, England
关键词
MAXIMAL VOLUNTARY CONTRACTIONS; LOCOMOTOR MUSCLE FATIGUE; REPEATED SUBMAXIMAL CONTRACTIONS; CENTRAL MOTOR DRIVE; CRITICAL POWER; OXYGEN-UPTAKE; MUSCULAR FATIGUE; SKELETAL-MUSCLE; CELLULAR MECHANISMS; SUPRASPINAL FACTORS;
D O I
10.1113/expphysiol.2010.052688
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
It is not possible to attain a metabolic steady state during exercise above the so-called critical force or critical power. We tested the hypothesis that the muscle metabolic perturbations at the end of a bout of maximal isometric contractions, which yield a stable end-test force (equal to the critical force), would be similar to that at task failure following submaximal contractions performed above the critical force. Eight healthy subjects (four female) performed isometric single knee-extension exercise in the bore of a 1.5 T superconducting magnet on two occasions. Following familiarization, subjects performed the following exercises: (1) 60 maximal contractions (3 s contraction, 2 s rest); and (2) submaximal contractions (the same contraction regime performed at 54 +/- 8% maximal voluntary contraction) to task failure. Phosphocreatine (PCr), inorganic phosphate (P(i)) and diprotonated phosphate (H(2)PO(4)-) concentrations and pH were determined using 31P magnetic resonance spectroscopy throughout both tests. During the maximal contractions, force production fell from 213 +/- 33 N to reach a plateau in the last 30 s of the test at 100 +/- 20 N. The muscle metabolic responses at the end of each test were substantial, but not different between conditions: [PCr] was reduced (to 21 +/- 12 and 17 +/- 7% of baseline for maximal and submaximal contractions, respectively; P = 0.17), [P(i)] was elevated (to 364 +/- 98 and 363 +/- 135% of baseline, respectively; P = 0.98) and pH reduced (to 6.64 +/- 0.16 and 6.69 +/- 0.17, respectively; P = 0.43). The [H(2)PO(4)-] was also elevated at the end of both tests (to 607 +/- 252 and 556 +/- 269% of baseline, respectively; P = 0.22). These data suggest that the exercise-induced metabolic perturbations contributing to force depression in all-out exercise are the same as those contributing to task failure during submaximal contractions.
引用
收藏
页码:798 / 807
页数:10
相关论文
共 48 条
[1]   Skeletal muscle fatigue: Cellular mechanisms [J].
Allen, D. G. ;
Lamb, G. D. ;
Westerblad, H. .
PHYSIOLOGICAL REVIEWS, 2008, 88 (01) :287-332
[2]   Role of phosphate and calcium stores in muscle fatigue [J].
Allen, DG ;
Westerblad, H .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 536 (03) :657-665
[3]   Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance [J].
Amann, Markus ;
Dempsey, Jerome A. .
JOURNAL OF PHYSIOLOGY-LONDON, 2008, 586 (01) :161-173
[4]   Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans [J].
Amann, Markus ;
Romer, Lee M. ;
Subudhi, Andrew W. ;
Pegelow, David F. ;
Dempsey, Jerome A. .
JOURNAL OF PHYSIOLOGY-LONDON, 2007, 581 (01) :389-403
[5]   Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans [J].
Amann, Markus ;
Eldridge, Marlowe W. ;
Lovering, Andrew T. ;
Stickland, Michael K. ;
Pegelow, David F. ;
Dempsey, Jerome A. .
JOURNAL OF PHYSIOLOGY-LONDON, 2006, 575 (03) :937-952
[6]   Effects of arterial oxygen content on peripheral locomotor muscle fatigue [J].
Amann, Markus ;
Romer, Lee M. ;
Pegelow, David F. ;
Jacques, Anthony J. ;
Hess, C. Joel ;
Dempsey, Jerome A. .
JOURNAL OF APPLIED PHYSIOLOGY, 2006, 101 (01) :119-127
[7]   Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans [J].
Amann, Markus ;
Proctor, Lester T. ;
Sebranek, Joshua J. ;
Pegelow, David F. ;
Dempsey, Jerome A. .
JOURNAL OF PHYSIOLOGY-LONDON, 2009, 587 (01) :271-283
[8]   Effects of fatigue duration and muscle type on voluntary and evoked contractile properties [J].
Behm, DG ;
StPierre, DMM .
JOURNAL OF APPLIED PHYSIOLOGY, 1997, 82 (05) :1654-1661
[9]   CHANGES IN MUSCLE CONTRACTILE PROPERTIES AND NEURAL CONTROL DURING HUMAN MUSCULAR FATIGUE [J].
BIGLANDRITCHIE, B ;
WOODS, JJ .
MUSCLE & NERVE, 1984, 7 (09) :691-699
[10]   FATIGUE OF INTERMITTENT SUBMAXIMAL VOLUNTARY CONTRACTIONS - CENTRAL AND PERIPHERAL FACTORS [J].
BIGLANDRITCHIE, B ;
FURBUSH, F ;
WOODS, JJ .
JOURNAL OF APPLIED PHYSIOLOGY, 1986, 61 (02) :421-429