WELL-POSEDNESS AND ILL-POSEDNESS FOR THE CUBIC FRACTIONAL SCHRODINGER EQUATIONS

被引:53
作者
Cho, Yonggeun [1 ,2 ]
Hwang, Gyeongha [3 ]
Kwon, Soonsik [4 ]
Lee, Sanghyuk [5 ]
机构
[1] Chonbuk Natl Univ, Dept Math, Jeonju 561756, South Korea
[2] Chonbuk Natl Univ, Inst Pure & Appl Math, Jeonju 561756, South Korea
[3] Ulsan Natl Inst Sci & Technol, Dept Math Sci, Ulsan 689798, South Korea
[4] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
[5] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
关键词
Fractional Schrodinger equation; cubic nonlinearity; well-posedness; ill-posedness;
D O I
10.3934/dcds.2015.35.2863
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the low regularity well-posedness of the 1-dimensional cubic nonlinear fractional Schrodinger equations with Levy indices 1 < alpha < 2. We consider both non-periodic and periodic cases, and prove that the Cauchy problems are locally well-posed in H-S for s >= 2-alpha/4. This is shown via a trilinear estimate in Bourgain's X-s,X-b space. We also show that non-periodic equations are ill-posed in H-S for 2-3 alpha/4(alpha+1) < 2-alpha/4 in the sense that the flow map is not locally uniformly continuous.
引用
收藏
页码:2863 / 2880
页数:18
相关论文
共 14 条
  • [1] Burq N, 2002, MATH RES LETT, V9, P323
  • [2] GLOBAL WELL-POSEDNESS AND I METHOD FOR THE FIFTH ORDER KORTEWEG-DE VRIES EQUATION
    Chen, Wengu
    Guo, Zihua
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2011, 114 : 121 - 156
  • [3] Strichartz Estimates in Spherical Coordinates
    Cho, Yonggeun
    Lee, Sanghyuk
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (03) : 991 - 1020
  • [4] On the Cauchy Problem of Fractional Schrodinger Equation with Hartree Type Nonlinearity
    Cho, Yonggeun
    Hajaiej, Hichem
    Hwang, Gyeongha
    Ozawa, Tohru
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (02): : 193 - 224
  • [5] Profile decompositions and blowup phenomena of mass critical fractional Schrodinger equations
    Cho, Yonggeun
    Hwang, Gyeongha
    Kwon, Soonsik
    Lee, Sanghyuk
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 86 : 12 - 29
  • [6] REMARKS ON SOME DISPERSIVE ESTIMATES
    Cho, Yonggeun
    Ozawa, Tohru
    Xia, Suxia
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (04) : 1121 - 1128
  • [7] Christ M, 2003, AM J MATH, V125, P1235
  • [8] Demirbas S., ARXIV13125249
  • [9] Global Well-Posedness for the Fractional Nonlinear Schrodinger Equation
    Guo, Boling
    Huo, Zhaohui
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (02) : 247 - 255
  • [10] Nonlinear fractional Schrodinger equations in one dimension
    Ionescu, Alexandru D.
    Pusateri, Fabio
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) : 139 - 176