WELL-POSEDNESS AND ILL-POSEDNESS FOR THE CUBIC FRACTIONAL SCHRODINGER EQUATIONS

被引:54
作者
Cho, Yonggeun [1 ,2 ]
Hwang, Gyeongha [3 ]
Kwon, Soonsik [4 ]
Lee, Sanghyuk [5 ]
机构
[1] Chonbuk Natl Univ, Dept Math, Jeonju 561756, South Korea
[2] Chonbuk Natl Univ, Inst Pure & Appl Math, Jeonju 561756, South Korea
[3] Ulsan Natl Inst Sci & Technol, Dept Math Sci, Ulsan 689798, South Korea
[4] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
[5] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
关键词
Fractional Schrodinger equation; cubic nonlinearity; well-posedness; ill-posedness;
D O I
10.3934/dcds.2015.35.2863
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the low regularity well-posedness of the 1-dimensional cubic nonlinear fractional Schrodinger equations with Levy indices 1 < alpha < 2. We consider both non-periodic and periodic cases, and prove that the Cauchy problems are locally well-posed in H-S for s >= 2-alpha/4. This is shown via a trilinear estimate in Bourgain's X-s,X-b space. We also show that non-periodic equations are ill-posed in H-S for 2-3 alpha/4(alpha+1) < 2-alpha/4 in the sense that the flow map is not locally uniformly continuous.
引用
收藏
页码:2863 / 2880
页数:18
相关论文
共 14 条
[1]  
Burq N, 2002, MATH RES LETT, V9, P323
[2]   GLOBAL WELL-POSEDNESS AND I METHOD FOR THE FIFTH ORDER KORTEWEG-DE VRIES EQUATION [J].
Chen, Wengu ;
Guo, Zihua .
JOURNAL D ANALYSE MATHEMATIQUE, 2011, 114 :121-156
[3]   Strichartz Estimates in Spherical Coordinates [J].
Cho, Yonggeun ;
Lee, Sanghyuk .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (03) :991-1020
[4]   On the Cauchy Problem of Fractional Schrodinger Equation with Hartree Type Nonlinearity [J].
Cho, Yonggeun ;
Hajaiej, Hichem ;
Hwang, Gyeongha ;
Ozawa, Tohru .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (02) :193-224
[5]   Profile decompositions and blowup phenomena of mass critical fractional Schrodinger equations [J].
Cho, Yonggeun ;
Hwang, Gyeongha ;
Kwon, Soonsik ;
Lee, Sanghyuk .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 86 :12-29
[6]   REMARKS ON SOME DISPERSIVE ESTIMATES [J].
Cho, Yonggeun ;
Ozawa, Tohru ;
Xia, Suxia .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (04) :1121-1128
[7]  
Christ M, 2003, AM J MATH, V125, P1235
[8]  
Demirbas S., ARXIV13125249
[9]   Global Well-Posedness for the Fractional Nonlinear Schrodinger Equation [J].
Guo, Boling ;
Huo, Zhaohui .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (02) :247-255
[10]   Nonlinear fractional Schrodinger equations in one dimension [J].
Ionescu, Alexandru D. ;
Pusateri, Fabio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) :139-176