Phase space derivation of a variational principle for one-dimensional Hamiltonian systems

被引:3
作者
Benguria, RD [1 ]
Depassier, MC [1 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Fis, Santiago 22, Chile
关键词
Hamiltonian mechanics; bifurcations; variational principles;
D O I
10.1016/S0375-9601(98)00100-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the bifurcation problem u " + lambda u = N(u) with two point boundary conditions where N(u) is a general nonlinear term which may also depend on the eigenvalue lambda, A new derivation of a variational principle for the lowest eigenvalue lambda is given. This derivation makes use only of simple algebraic inequalities and leads directly to a more explicit expression for the eigenvalue than what had been given previously. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:144 / 146
页数:3
相关论文
共 8 条
[1]   Speed of fronts of the reaction-diffusion equation [J].
Benguria, RD ;
Depassier, MC .
PHYSICAL REVIEW LETTERS, 1996, 77 (06) :1171-1173
[2]   Variational characterization of the speed of propagation of fronts for the nonlinear diffusion equation [J].
Benguria, RD ;
Depassier, MC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (01) :221-227
[3]   Variational principle for eigenvalue problems of Hamiltonian systems [J].
Benguria, RD ;
Depassier, MC .
PHYSICAL REVIEW LETTERS, 1996, 77 (14) :2847-2850
[4]  
Hale J, 1991, DYNAMICS BIFURCATION
[5]  
Keller J.B., 1969, Bifurcation Theory and Nonlinear Eigenvalue Problems
[6]  
Minorsky N., 1962, NONLINEAR OSCILLATIO
[7]  
Nayfeh A. H., 1979, Perturbation Methods
[8]  
RABINOWITZ PH, 1977, APPL BIFURCATION THE