Tilings, Lie theory and combinatorics

被引:0
作者
Morita, Jun [1 ]
机构
[1] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
来源
QUANTUM AFFINE ALGEBRAS, EXTENDED AFFINE LIE ALGEBRAS, AND THEIR APPLICATIONS | 2010年 / 506卷
关键词
word; tiling; Lie algebra; group; bialgebra; combinatorics; SPECTRA; WORDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here we will review several approaches to words and one dimensional tilings, which produces combinatorics leading to a rationality theorem for some word invariant. We use the Kellendonk product to create an algebraic structure. Then we construct monoids (Kellendonk monoids) and monoid algebras (Kellendonk-Putnam algebras), which makes it possible to study the associated groups and Lie algebras. Also we obtain bialgebras and their standard modules. From these algebraic structures, we obtain interesting combinatorics, which controls the local indistinguishability of tilings. The combinatorics induce power series as invariants. We discuss Fibonacci sequences and their associated power series, which leads to several examples and new observations. Finally we discuss the rationality for the coefficients of the corresponding power series.
引用
收藏
页码:173 / 185
页数:13
相关论文
共 50 条
[41]   On Characterizations of Fourier Frames and Tilings [J].
Ding, Dao-Xin ;
Li, Hai-Xiong .
JOURNAL OF APPLIED MATHEMATICS, 2013,
[42]   BOUNDARY DIMENSIONS OF FRACTAL TILINGS [J].
Ouyang, Peichang ;
Yi, Hua ;
Deng, Zhiyun ;
Huang, Xuan ;
Yu, Tao .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2015, 23 (04)
[43]   Variations on tilings in the Manhattan metric [J].
Gravier, S ;
Mollard, M ;
Payan, C .
GEOMETRIAE DEDICATA, 1999, 76 (03) :265-273
[44]   Binomial ideals of domino tilings [J].
Gross, Elizabeth ;
Yamzon, Nicole .
DISCRETE MATHEMATICS, 2021, 344 (11)
[45]   Polyboxes, cube tilings and rigidity [J].
Kisielewicz, Andrzej P. ;
Przeslawski, Krzysztof .
DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 40 (01) :1-30
[46]   Polyboxes, Cube Tilings and Rigidity [J].
Andrzej P. Kisielewicz ;
Krzysztof Przesławski .
Discrete & Computational Geometry, 2008, 40 :1-30
[47]   THE PHASE TRANSITION FOR DYADIC TILINGS [J].
Angel, Omer ;
Holroyd, Alexander E. ;
Kozma, Gady ;
Wastlund, Johan ;
Winkler, Peter .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (02) :1029-1046
[48]   Tilings of Z with multisets of distances [J].
Kupavskii, Andrey ;
Popova, Elizaveta .
DISCRETE MATHEMATICS, 2024, 347 (09)
[49]   Planarity, Symmetry and Counting Tilings [J].
Kayibi, Koko K. ;
Pirzada, S. .
GRAPHS AND COMBINATORICS, 2012, 28 (04) :483-497
[50]   Tetromino tilings on the Tetris board* [J].
Oh, Seungsang ;
Yi, Jaehwan .
PHYSICA SCRIPTA, 2023, 98 (07)