Engineering drug design using a multi-input multi-output neuro-fuzzy system

被引:0
作者
Grosan, Crina [1 ]
Abraham, Ajith [2 ]
Tigan, Stefan [3 ]
机构
[1] Univ Babes Bolyai, Dept Comp Sci, Cluj Napoca 3400, Romania
[2] Yonsei Univ, Sch Comp Sci, IITA Professors Program, Seoul 120749, South Korea
[3] University Iuliu Hattieganu, Dept Biostat &Med Informat, Fac Med, Cluj Napoca, Romania
来源
SYNASC 2006: EIGHTH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, PROCEEDINGS | 2007年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents a multi-input multi-output (MIMO) neuro-fuzzy model for a pharmaceutical research problem. Designing drugs is a current problem in the pharmaceutical research domain. By designing a drug we mean to choose some variables of drug formulation (inputs), for obtaining optimal characteristics of drug (outputs). To solve such a problem we propose a neuro-fuzzy model and the performance is compared with artificial neural networks. This research used the experimental data obtained from the Laboratory of Pharmaceutical Techniques of the Faculty of Pharmacy in Cluj-Napoca, Romania. The idea is to build a multi-input - multi-output neuro-fuzzy model depicting the dependence between inputs and outputs. A first order Takagi-Sugeno type fuzzy inference system is developed and it is fine tuned using neural network learning techniques. Bootstrap techniques were used to generate more samples of data and the number of experimental data is reduced due to the costs and time durations of experimentations. We obtain in this way a better estimation of some drug parameters. Experiment results indicate that the proposed method is efficient.
引用
收藏
页码:365 / +
页数:2
相关论文
共 50 条
[41]   Multi-input multi-output aeroelastic control using the receptance method [J].
Mokrani, B. ;
Palazzo, F. ;
Fichera, S. ;
Adamson, L. ;
Mottershead, J. E. .
PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2018) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2018), 2018, :153-163
[42]   SENSITIVITY INVARIANCE OF MULTI-INPUT MULTI-OUTPUT NETWORKS [J].
SOHAL, JS ;
SINGH, H .
PROCEEDINGS OF THE IEEE, 1976, 64 (04) :560-560
[43]   Multi-input/multi-output block diagram grammar [J].
Adachi, Y ;
Kobayashi, S ;
Tsuchida, K .
ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, :E183-E186
[44]   RECURSIVE IDENTIFICATION OF MULTI-INPUT, MULTI-OUTPUT SYSTEMS [J].
GAUTHIER, A ;
LANDAU, ID .
AUTOMATICA, 1978, 14 (06) :609-614
[45]   Multi-input, Multi-output Hybrid Energy Systems [J].
Arent, Douglas J. ;
Bragg-Sitton, Shannon M. ;
Miller, David C. ;
Tarka, Thomas J. ;
Engel-Cox, Jill A. ;
Boardman, Richard D. ;
Balash, Peter C. ;
Ruth, Mark F. ;
Cox, Jordan ;
Garfield, David J. .
JOULE, 2021, 5 (01) :47-58
[46]   Multi-Input Multi-Output Ellipsoidal State Bounding [J].
C. Durieu ;
É. Walter ;
B. Polyak .
Journal of Optimization Theory and Applications, 2001, 111 :273-303
[47]   Multi-input multi-output ellipsoidal state bounding [J].
Durieu, C ;
Walter, É ;
Polyak, B .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 111 (02) :273-303
[48]   Temperature and humidity management of PEM fuel cell power system using multi-input and multi-output fuzzy method [J].
Chen, Xi ;
Xu, Jianghai ;
Fang, Ye ;
Li, Wenbin ;
Ding, Yuejiao ;
Wan, Zhongmin ;
Wang, Xiaodong ;
Tu, Zhengkai .
APPLIED THERMAL ENGINEERING, 2022, 203
[49]   Functional observer design for a class of multi-input and multi-output nonlinear systems [J].
Cai, Xiushan ;
Liu, Yang ;
Zhang, Haoran .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (10) :3046-3059
[50]   Robust Controller Design for Multi-Input Multi-Output Systems Using Coefficient Diagram Method [J].
Liu, Kai ;
Meng, Fanwei ;
Meng, Shengya ;
Wang, Chonghui .
ENTROPY, 2021, 23 (09)