An Extension of Gene Expression Programming with Hybrid Selection

被引:4
|
作者
Liu, Julie Yu-Chih [1 ]
Chen, Jeng-Her Alex [1 ]
Chiu, Chiang-Tien [1 ]
Hsieh, Juo-Chiang [1 ]
机构
[1] Yuan Ze Univ, Dept Informat Management, Tau Yuan 32003, Taiwan
来源
PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNOLOGIES AND ENGINEERING SYSTEMS (ICITES2013) | 2014年 / 293卷
关键词
Evolutionary algorithm; Gene expression programming; Hybrid selection; Local optimum;
D O I
10.1007/978-3-319-04573-3_79
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Premature convergence and suboptimal solutions are inevitable problems for evolutionary algorithms, such as Gene Expression Programming (GEP). This study proposes an extension of GEP which includes a hybrid selection method and a diversity maintenance mechanism to release local optimum of the GEP algorithm. The hybrid selection involves the Clonal selection and the Roulette wheel method. The experimental results show that the proposed algorithm outperforms Ferreira's GEP algorithm.
引用
收藏
页码:635 / 641
页数:7
相关论文
共 50 条
  • [21] Code Reuse in Gene Expression Programming
    Li Qu
    Yao Min
    Wang Weihong
    Du Yanye
    INTELLIGENT STRUCTURE AND VIBRATION CONTROL, PTS 1 AND 2, 2011, 50-51 : 13 - +
  • [22] Gene Expression Programming for Quantum Computing
    Alvarez, Gonzalo
    Bennink, Ryan
    Irle, Stephan
    Jakowski, Jacek
    ACM TRANSACTIONS ON QUANTUM COMPUTING, 2023, 4 (04):
  • [23] Gene expression programming with DAG chromosome
    Quan, Hui-yun
    Yang, Guangyi
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 271 - +
  • [24] Rule discovery with Gene Expression Programming
    Wu, Qinghua
    Wang, Dianhong
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS, 2007, : 479 - 482
  • [25] Generating Plants with Gene Expression Programming
    Venter, Johannes
    Hardy, Alexandre
    AFRIGRAPH 2007: 5TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, COMPUTER GRAPHICS, VISUALIZATION AND INTERACTION IN AFRICA, 2007, : 159 - 167
  • [26] Gene expression programming with multiple chromosomes
    Wang, Bo
    Yao, Min
    Zhu, Rong
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 14 (04) : 235 - 241
  • [27] Gene Expression Programming and Trading Strategies
    Sermpinis, Georgios
    Fountouli, Anastasia
    Theofilatos, Konstantinos
    Karathanasopoulos, Andreas
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2013, 2013, 412 : 497 - 505
  • [28] Multicellular Gene Expression Programming-Based Hybrid Model for Precipitation Prediction Coupled with EMD
    Li, Hongya
    Peng, Yuzhong
    Deng, Chuyan
    Pan, Yonghua
    Gong, Daoqing
    Zhang, Hao
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, PT I, 2018, 10954 : 207 - 218
  • [29] A Hybrid Logistic Regression: Gene Expression Programming Model and Its Application to Mineral Prospectivity Mapping
    Fan Xiao
    Weilin Chen
    Jun Wang
    Oktay Erten
    Natural Resources Research, 2022, 31 : 2041 - 2064
  • [30] Prediction of pavement roughness using a hybrid gene expression programming-neural network technique
    Mehran Mazari
    Daniel D.Rodriguez
    Journal of Traffic and Transportation Engineering(English Edition), 2016, (05) : 448 - 455