Over-Dispersed Claim Counts Regression Models and Their Applications in Auto Insurance

被引:0
作者
Meng Shengwang [1 ]
机构
[1] Renmin Univ China, Sch Stat, Beijing 100872, Peoples R China
来源
RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, VOLS I AND II | 2009年
关键词
Auto Insurance; Claim Count; Over-dispersion; Mixed Binomial; Mixed Negative Binomial;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Poisson regression model is widely used in auto claim count models for ratemaking practice. But as the actual claim count data often appears to be over-dispersed (i.e. variance is larger than mean), the Poisson regression model may not produce reasonable results. The paper fist compares several mixed Poisson regression models that may be used to account for overdispersion in claim count data, including Negative Binomial regression(NB), Poisson-inverse Gaussian regression(PIG), Poisson-Lognormal regression(PLN), generalized Poisson regression(GP). Then the paper proposes two new regression models that may also be used for over-dispersed claim count data, namely mixed binomial regression(MB) and mixed negative binomial regression(MNB). Finally the paper applies all these models to an actual auto claim count data and compares the results.
引用
收藏
页码:1387 / 1394
页数:8
相关论文
共 6 条
[1]  
[Anonymous], 2018, Generalized linear models
[2]  
DENIUT M, 2007, ACTUARIAL MODELING C
[3]  
Ismail N., 2007, CASUALTY ACTUARIAL S, P103
[4]  
JOE E, 2005, BIOMETR J, P219
[5]  
Klugmann SA., 2004, LOSS MODELS DATA DEC, V2nd
[6]  
Stasinopoulos D. M., 2006, GAMLSS COLLECTION FU