Quantum Measures on Finite Effect Algebras with the Riesz Decomposition Properties

被引:1
|
作者
Yang, Aili [1 ]
Xie, Yongjian [2 ]
机构
[1] Xian Univ Sci & Technol, Coll Sci, Xian 710054, Peoples R China
[2] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
基金
美国国家科学基金会;
关键词
Quantum interference; Effect algebra; Quantum measure; Tensor product; HISTORIES APPROACH; DIFFERENCE POSETS; TENSOR PRODUCT; LOGIC;
D O I
10.1007/s10701-014-9826-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One kind of generalized measures called quantum measures on finite effect algebras, which fulfil the grade-2 additive sum rule, is considered. One basis of vector space of quantum measures on a finite effect algebra with the Riesz decomposition property (RDP for short) is given. It is proved that any diagonally positive symmetric signed measure on the tensor product can determine a quantum measure on a finite effect algebra with the RDP such that for any . Furthermore, some conditions for a grade-2 additive measure on a finite effect algebra are provided to guarantee that there exists a unique diagonally positive symmetric signed measure on such that for any . At last, it is showed that any grade- quantum measure on a finite effect algebra with the RDP is essentially established by the values on a subset of .
引用
收藏
页码:1009 / 1037
页数:29
相关论文
共 44 条
  • [21] Riesz decomposition properties and the lexicographic product of po-groups
    Dvurecenskij, Anatolij
    SOFT COMPUTING, 2016, 20 (06) : 2103 - 2117
  • [22] Super Quantum Measures on Finite Spaces
    Yongjian Xie
    Aili Yang
    Fang Ren
    Foundations of Physics, 2013, 43 : 1039 - 1065
  • [23] Riesz decomposition properties and the lexicographic product of po-groups
    Anatolij Dvurečenskij
    Soft Computing, 2016, 20 : 2103 - 2117
  • [24] Separating points of measures on effect algebras
    Avallone, Anna
    MATHEMATICA SLOVACA, 2007, 57 (02) : 129 - 140
  • [25] Decompositions of measures on pseudo effect algebras
    Anatolij Dvurečenskij
    Soft Computing, 2011, 15 : 1825 - 1833
  • [26] Decompositions of measures on pseudo effect algebras
    Dvurecenskij, Anatolij
    SOFT COMPUTING, 2011, 15 (09) : 1825 - 1833
  • [27] Quantum Observables and Effect Algebras
    Dvurecenskij, Anatolij
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (03) : 637 - 651
  • [28] Quantum Observables and Effect Algebras
    Anatolij Dvurečenskij
    International Journal of Theoretical Physics, 2018, 57 : 637 - 651
  • [29] MATRIX REPRESENTATION OF FINITE EFFECT ALGEBRAS
    Binczak, Grzegorz
    Kaleta, Joanna
    Zembrzuski, Andrzej
    KYBERNETIKA, 2023, 59 (05) : 737 - 751
  • [30] Decomposition of effect algebras and the Hammer–Sobczyk theorem
    Anna Avallone
    Giuseppina Barbieri
    Paolo Vitolo
    Hans Weber
    Algebra universalis, 2009, 60 : 1 - 18