A moving horizon approach to networked control system design

被引:180
作者
Goodwin, GC [1 ]
Haimovich, H [1 ]
Quevedo, DE [1 ]
Welsh, JS [1 ]
机构
[1] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
关键词
centralized control; control over networks; digital control; limited communications; moving horizon estimation; networked control systems; optimal control; predictive control; quantization; set-valued observers; stability; vector quantization;
D O I
10.1109/TAC.2004.834132
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a control system design strategy for multivariable plants where the controller, sensors and actuators are connected via a digital, data-rate limited, communications channel. In order to minimize bandwidth utilization, a communication constraint is imposed which restricts all transmitted data to belong to a finite set and only permits one plant to be addressed at a time. We emphasize implementation issues and employ moving horizon techniques to deal with both control and measurement quantization issues. We illustrate the methodology by simulations and a laboratory-based pilot-scale study.
引用
收藏
页码:1427 / 1445
页数:19
相关论文
共 47 条
[31]   A STOCHASTIC REGULATOR FOR INTEGRATED COMMUNICATION AND CONTROL-SYSTEMS .1. FORMULATION OF CONTROL LAW [J].
LIOU, LW ;
RAY, A .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1991, 113 (04) :604-611
[32]  
M, 2001, IEEE CONTR SYST MAG, V21, P57
[33]  
Maciejowski J. M., 2002, Predictive control: with constraints
[34]   Constrained model predictive control: Stability and optimality [J].
Mayne, DQ ;
Rawlings, JB ;
Rao, CV ;
Scokaert, POM .
AUTOMATICA, 2000, 36 (06) :789-814
[35]   OPTIMAL ESTIMATION THEORY FOR DYNAMIC-SYSTEMS WITH SET MEMBERSHIP UNCERTAINTY - AN OVERVIEW [J].
MILANESE, M ;
VICINO, A .
AUTOMATICA, 1991, 27 (06) :997-1009
[36]   Stochastic analysis and control of real-time systems with random time delays [J].
Nilsson, J ;
Bernhardsson, B ;
Wittenmark, B .
AUTOMATICA, 1998, 34 (01) :57-64
[37]  
Norton J., 1994, INT J ADAPTIVE CONTR, V8
[38]  
Palopoli L, 2002, IEEE DECIS CONTR P, P1626, DOI 10.1109/CDC.2002.1184752
[39]   EXACT DESCRIPTION OF FEASIBLE PARAMETER SETS AND MINIMAX ESTIMATION [J].
PIETLAHANIER, H ;
WALTER, E .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 1994, 8 (01) :5-14
[40]  
Proakis J., 1995, DIGITAL COMMUNICATIO