Hidden Markov chains and fields with observations in Riemannian manifolds

被引:3
作者
Said, Salem [1 ]
Le Bihan, Nicolas [2 ]
Manton, Jonathan H. [3 ]
机构
[1] Univ Bordeaux, CNRS, Bordeaux, France
[2] CNRS, Gipsa Lab, Grenoble, France
[3] Univ Melbourne, Melbourne, Vic, Australia
关键词
Riemannian manifold; hidden Markov model; Markov field; EM algorithm;
D O I
10.1016/j.ifacol.2021.06.135
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hidden Markov chain, or Markov field, models, with observations in a Euclidean space, play a major role across signal and image processing. The present work provides a statistical framework which can be used to extend these models, along with related, popular algorithms (such as the Baum-Welch algorithm), to the case where the observations lie in a Riemannian manifold. It is motivated by the potential use of hidden Markov chains and fields, with observations in Riemannian manifolds, as models for complex signals and images. Copyright (C) 2021 The Authors.
引用
收藏
页码:719 / 724
页数:6
相关论文
共 25 条
[1]  
[Anonymous], 2002, Einstein manifolds
[2]  
[Anonymous], 1995, Hidden Markov Models. Estimation and Control
[3]  
Banerjee A, 2005, J MACH LEARN RES, V6, P1345
[4]   Multiclass Brain-Computer Interface Classification by Riemannian Geometry [J].
Barachant, Alexandre ;
Bonnet, Stephane ;
Congedo, Marco ;
Jutten, Christian .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (04) :920-928
[5]  
Cappe Olivier, 2005, SPR S STAT
[6]  
Celeux B., 2001, 4105 INRIA
[7]  
Celeux B., 2002, 4456 INRIA
[8]   Kernel Density Estimation on the Siegel Space with an Application to Radar Processing [J].
Chevallier, Emmanuel ;
Forget, Thibault ;
Barbaresco, Frederic ;
Angulo, Jesus .
ENTROPY, 2016, 18 (11)
[9]  
Cover T. M., 2006, ELEMENTS INFORM THEO, V2nd
[10]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38