Boundary layers for parabolic regularizations of totally characteristic quasilinear parabolic equations

被引:14
作者
Grenier, E [1 ]
机构
[1] Univ Paris 06, Anal Numer Lab, CNRS, URA 189, F-75252 Paris 05, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 1997年 / 76卷 / 10期
关键词
boundary layers; parabolic equations;
D O I
10.1016/S0021-7824(97)89979-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study boundary layers of nonlinear characteristic parabolic equations as the viscosity goes to zero. We obtain and justify in small time a complete expansion of the solution with respect to the viscosity.
引用
收藏
页码:965 / 990
页数:26
相关论文
共 13 条
[1]  
[Anonymous], COMPRESSIBLE FLUID F
[2]   MAXIMAL POSITIVE BOUNDARY-VALUE-PROBLEMS AS LIMITS OF SINGULAR PERTURBATION PROBLEMS [J].
BARDOS, C ;
RAUCH, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 270 (02) :377-408
[3]   SYMMETRIC HYPERBOLIC LINEAR DIFFERENTIAL EQUATIONS [J].
FRIEDRICHS, KO .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1954, 7 (02) :345-392
[4]  
GRENIER E, UNPUB
[5]  
GRENIER E, 1996, P C EDP SAINT J DEMO
[8]  
GUES O, 1993, SEM EDP EC POL
[9]   SINGULAR LIMITS OF QUASILINEAR HYPERBOLIC SYSTEMS WITH LARGE PARAMETERS AND THE INCOMPRESSIBLE LIMIT OF COMPRESSIBLE FLUIDS [J].
KLAINERMAN, S ;
MAJDA, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :481-524
[10]   LOCAL BOUNDARY CONDITIONS FOR DISSIPATIVE SYMMETRIC LINEAR DIFFERENTIAL OPERATORS [J].
LAX, PD ;
PHILLIPS, RS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1960, 13 (03) :427-455