A Parabolic Problem with a Fractional Time Derivative

被引:154
作者
Allen, Mark [1 ]
Caffarelli, Luis [1 ]
Vasseur, Alexis [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
REGULARITY; OPERATORS;
D O I
10.1007/s00205-016-0969-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study regularity for a parabolic problem with fractional diffusion in space and a fractional time derivative. Our main result is a De Giorgi-Nash-Moser Holder regularity theorem for solutions in a divergence form equation. We also prove results regarding existence, uniqueness, and higher regularity in time.
引用
收藏
页码:603 / 630
页数:28
相关论文
共 10 条
[1]  
[Anonymous], 1995, Fully nonlinear elliptic equations
[2]   REGULARITY THEORY FOR PARABOLIC NONLINEAR INTEGRAL OPERATORS [J].
Caffarelli, Luis ;
Chan, Chi Hin ;
Vasseur, Alexis .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :849-869
[3]   Nondiffusive transport in plasma turbulence: A fractional diffusion approach [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICAL REVIEW LETTERS, 2005, 94 (06)
[4]   Fractional diffusion in plasma turbulence [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICS OF PLASMAS, 2004, 11 (08) :3854-3864
[5]   Local Regularity for Parabolic Nonlocal Operators [J].
Felsinger, Matthieu ;
Kassmann, Moritz .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (09) :1539-1573
[6]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[7]  
Samko A. A., 1993, Fractional Integrals andDerivatives: Theory and Applications
[8]   A De Giorgi-Nash type theorem for time fractional diffusion equations [J].
Zacher, Rico .
MATHEMATISCHE ANNALEN, 2013, 356 (01) :99-146
[9]   Weak Solutions of Abstract Evolutionary Integro-Differential Equations in Hilbert Spaces [J].
Zacher, Rico .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2009, 52 (01) :1-18
[10]   Chaos, fractional kinetics, and anomalous transport [J].
Zaslavsky, GM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 371 (06) :461-580